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Abstract
The human memory system is adept at cataloging the rich
dynamics of ongoing experience. However, traditional
trial-based memory experiments cannot capture these dy-
namics, and therefore cannot be used to study them. By
constraining participants’ experiences in an experiment
to occur in temporally discrete trials, often arranged in
a randomized order, the temporal, contextual, and emo-
tional structure of those in-lab experiences necessarily
differ from the naturalistic experiences we encounter in
everyday life. Here we investigate how people verbally
recall continuous videos by characterizing and relating
the thematic dynamics, or “trajectories,” of the stimulus
and participants’ recalls. Unlike trial-based studies of
memory wherein participants attempt to recall the precise
stimuli they encounter, naturalistic recall entails captur-
ing the fundamental geometric components of the stimu-
lus topic trajectory. The precise words participants use to
describe the stimulus, and the level of detail and number
of distinct events they recall, vary considerably across
participants. Nevertheless, all of the participants’ recall
narratives captured the fundamental “shape” of the origi-
nal stimulus. We view this work as providing a window
into which aspects of naturalistic experiences must be
preserved, and which might be more flexible, in consider-
ing whether and how those experiences are remembered.
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Introduction
What does it mean to remember something? In traditional
episodic memory experiments (e.g., list-learning or trial-based
experiments; Murdock, 1962; Kahana, 1996), remembering is
often cast as a binary operation: either an item is recalled or
it isn’t. More nuanced studies might incorporate self-reported
confidence measures as a proxy for memory strength, or ask
participants to discriminate between “recollecting” an experi-
ence or a feeling of “familiarity” (Yonelinas, 2002). However,
characterizing and evaluating memory in more realistic con-
texts (e.g., telling a story to a friend about a recent vacation)
is a fundamentally different task. Real-world recall is continu-
ous, rather than binary. The specific words used to describe
an experience have very little bearing on whether the experi-
ence is considered to have been “remembered.” Further, one

might remember the gist of an experience but forgot (or ne-
glect to recount) particular details. Or different people who
share an experience might recount the experience with a sim-
ilar level of detail, but the specific details that were remem-
bered might vary across people. Which aspects of those rec-
ollections should be considered fundamental, and which are
extraneous to the main story?

Another major difference between traditional trial-based
memory paradigms and real-world memory concerns the sub-
jective experience of the participant. For example, consider an
emotionally salient event in your life (e.g. marriage, the birth
of a child, death of a loved one, etc.), or even a movie that
you were especially impacted by. No list-learning paradigm
(or similar) can hope to capture the nuance and depth of
such experiences. Our everyday experiences feel “impor-
tant” to us, whereas the words we study on a random word
list do not. One component of naturalistic experiences that
enhances their impact concerns the temporal structure with
which they unfold. For example, our experiences in the real
world are necessarily autocorrelated in space and time on
short timescales. Further, or experiences are often character-
ized by longer timescale correlations that reflect the impact of
our past actions and observations. These temporal dynamics
are not typically present in traditional memory studies, but are
important if we wish to understand how our memory systems
remember our everyday experiences.

To study how people recall naturalistic experiences, we an-
alyzed an open dataset which had 17 participants view and
verbally recall (in order)an episode of the BBC series Sher-
lock (Chen et al., 2017). Although the original study included
both behavioral and fMRI data, in this paper we have limited
our analysis to only the behavioral data.

Characterizing memory for naturalistic stimuli

We developed a novel computational approach for study-
ing memory for naturalistic stimuli. Our method uses Latent
Dirichlet Allocation (Blei et al., 2003), a Bayesian model that
transforms text into a probabilistic mixture of topics. We use
this topic model, applied to text descriptions of each moment
from the movie and transcripts of participants’ verbal recalls
of the movie, to represent the narrative structure. Specifically,
we fit a topic model to overlapping windows of manually anno-
tated text descriptions of scenes from an episode of Sherlock.
The text description contained details of the scene such as the



video frames

video descriptions

“And then, it cuts to a scene 
with him and his therapist who 
he doesn’t seem to trust...”

recall transcript

“A female psychotherapist and 
John are seen sitting across 
from each other in a brown...” 

Would you like me to get you a 
cup of coffee? And then we see 
him in the lab”

“Sherlock is pipetting 
chemicals in a  wet laboratory 
onto a petri dish. He peers...”

“He’s walking along, and he 
passes like, 2 payphones. They 
all ring in succession ...”

“The sound of a telephone 
ringing is heard and John stops 
walking. John turns to where...” 

#1 john, psychotherapist, indoor,
medium, room

#2 sherlock, john, hospital, 
st, bartholomew

#3 john, yes, road, 
outdoor, phone

... ...... ...

video timeline
0 1976

Timepoints (TR)t1 t2 t3

Figure 1: Schematic of the analysis approach. The top rectangle represents a timeline of the video stimulus. For each frame of
the video, text descriptions were manually created. Three exemplary frames are displayed here. Below the video descriptions
are text samples from an example participant’s verbal recall transcript. We trained a topic model on the moment-by-moment
video description text and transformed participant’s recall transcripts using this same model. The bar charts display the resulting
topic model weights for the video (in blue) and recall (in orange) for three example topic dimensions (to the left of the bar charts).
The words represent the top 5 words for each example topic.

characters, location, and a short summary of the scene (see
Fig. 1 for example text). We then transformed the text descrip-
tions with the (same) topic model, resulting in a scenes (1000)
by topics (100) matrix, where each row of the matrix reflects
the mixture of topics reflected in that scene’s description. We
expanded this matrix from 1000 to 1976 timepoints by copying
the vectors for scenes that spanned multiple timepoints. (This
expansion was performed to match the timing of the fMRI data
collected as participants viewed and recalled the movie.)

After watching the episode, participants verbally recalled (in
order) as much of the episode as they could. We used the
topic model, trained on the scene descriptions of the video, to
transform participants’ verbal recall transcripts (split by sen-
tence in overlapping chunks of 10 sentences). This yielded
a number-of-sentences by (100) topics matrix for each partic-
ipant, where each row represented the estimated mixture of
topics reflected by the corresponding sentences during recall.
We resampled the rows of these matrices to ensure that each
participant’s recall topics matrix had 1976 rows (to match the
number of rows of the video topics matrix).

We next computed timepoints (1976) by timepoints (1976)
correlation matrices for the video topics matrix and each par-

ticipant’s recall topics matrix. All of these matrices exhibited
strong block diagonal structure. In other words, the semantic
content (reflected by the topic mixture proportions) exhibited
periods of stability, followed by rapid changes, followed by sta-
bility. We interpreted the stable periods as events and the
periods of rapid change as event boundaries. Following Bal-
dassano et al. (2017), we used Hidden Markov Models to par-
tition each matrices into k events, where the optimal value of k
was determined from the data. Our algorithm found 34 events
for the video topic matrix and a range of values (range: 8–27;
mean: 15.41; std: 5.6) for the participants’ recall topic matri-
ces. The values of k across participants were highly correlated
with hand-annotated recall accuracies ascribed to the partic-
ipants by independent human raters (r = 0.67, p = 0.003),
suggesting that the algorithm divided the models into mean-
ingful units related to memory performance.

We used the event boundaries identified by the Hidden
Markov Model fit to the video topic matrix to create a video
event topic matrix. Specifically, we averaged the topic vectors
within each event to compute an events (34) by topics (100)
matrix. We performed the same procedure for the recall matri-
ces to yield events by topics matrices for each participant. We



computed the correlation between each event in the video and
participant event topic matrices. This yielded a video events
(34) by recall events (range: 8–27) correlation matrix for each
participant. These participant-wise matrices represent the ex-
tent to which each recall event was similar in content to each
video event. Finally, we matched each participants’ events to
the video event with the most correlated topic vector.

To visualize the relationship between the video and recall
topics, we embedded the video and average recall model into
a 2D space (using the UMAP dimensionality reduction algo-
rithm (McInnes & Healy, 2018)) where the embedded points
represent each event and the distances between points reflect
the similarity between the corresponding events’ topic mixture
proportions. We computed the group average transition prob-
abilities from each event to each other event and plotted the
values as lines, where the transparency is proportional to the
probability of the transition. Visual inspection reveals (and sta-
tistical analysis confirms) that the two models have a very sim-
ilar geometric structure, and the transition probabilities tend
to be strongest between events that occurred sequentially (or
nearby) in time (Fig 2a). To explore individual variability (and
consistency) in the recall event models, we embedded each
participant’s recall event model in the same 2D topic space de-
scribed above (Fig 2b). Despite the variability in the number of
events remembered, and the precise coordinates of individual
recall events, the overall shapes of the participants’ recall topic
trajectories were strikingly similar to the video topic trajectory
(Fig 2b). This reflects the participants’ abilities to capture the
fundamental conceptual geometry of the video narrative, de-
spite individual differences in the wording and resolution with
which that narrative was recounted.
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Figure 2: A. 2D embeddings (reduced with UMAP dimension-
ality reduction algorithm) of video and average recall event
topic matrices. The colors represent distinct video events (un-
folding from black to red). The lines connecting the dots in
the average recall matrix represent average transition proba-
bilities, where darker lines indicate a higher probability of tran-
sitioning. B. 2D embeddings of each participants’ recall event
topic matrices. Each dot represents a recall event and the
connecting lines indicate the order of recall. Colors indicate
the most likely video event that the participant was describing
as determined by the video-recall matching model.
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