Human Priors in Hierarchical Program Induction

Mark K Ho* (mark_ho@berkeley.edu), Sophia Sanborn* (sanborn@berkeley.edu),
Fred Callaway* (fredcallaway@berkeley.edu), David Bourgin (ddbourgin@berkeley.edu),
Tom Griffiths (tom_griffiths@berkeley.edu)

Department of Psychology, UC Berkeley
Tolman Hall
Berkeley, CA 94720, USA

Abstract

People impose structure onto other agents’ sequential
problem-solving behavior. That is, they interpret actions
in terms of a likely program that the observed agent was
executing to solve a problem. But what prior expecta-
tions do people have about these programs? For ex-
ample, in both cognitive science and computer science,
shortest description length has been proposed as a gen-
eral principle for inducing a program. However, there may
be other criteria that bias how people reconstruct others’
solutions: That they are symmetric, balanced, or orga-
nize child and parent processes in particular ways. Here,
we report preliminary experiments and models that in-
vestigate peoples’ priors on others’ problem-solving pro-
grams. We first present a novel experimental paradigm in
which participants were given examples of how a problem
was solved and needed to reconstruct the program that
generated the solution. Then, we discuss the applica-
tion of our model of human program priors to these data.
We find that shortest description length inadequately ex-
plains how people reconstruct others’ problem solving
programs.

Keywords: hierarchy; reinforcement learning; problem solving

Introduction

To solve complex problems, agents can organize their behav-
iors hierarchically.

Here, we explore the question of how people interpret
another’s problem-solving behavior from the perspective of
Bayesian inference over programs. This view naturally raises
the question of what priors people have over others’ programs.
For example, in algorithmic information theory, a minimum
description length prior based on the Kolmogorov complex-
ity of possible programs has been suggested as being optimal
(Ming & Vitanyi, 1990). This idea has also been proposed as
an organizing principle of human cognition (Chater & Vitanyi,
2003). However, there may be other criteria that guide how
people interpret or “parse” a sequence of actions into a pro-
gram. People may expect programs to have certain structural
properties beyond just description length, such as that it ob-
serves certain types of symmetry, that the depth of the exe-
cution tree is limited, or that subprocesses are only reused in
certain contexts.

Figure 1(a) shows a path in a the Lightbot game
(http://lightbot.com). In this game, the robot needs to

*Contributed equally to this work.

turn on all the lights (blue tiles) by moving around the grid.
Figure 1(b-d) show the path represented as a sequence of
discrete actions, and two distinct programs that produce the
sequence. The first (c) is the human-written program that gen-
erated the sequence, while (d) is a algorithmically generated
program consistent with the trace (i.e. the sequence of ac-
tions). Although they are both valid parsings using the same
number of subprocesses, they differ in a number of ways.
First, the program length, in terms of unique calls to a sub-
process or ground action, is greater for the human-generated
than algorithmically-generated program (33 versus 26). Sec-
ond, although both exhibit symmetry and reuse of subpro-
cesses, upon inspection they differ qualitatively. For example,
the algorithmically-generated program nests shorter subrou-
tines and calls one large subroutine (traversing a set of stairs)
twice, while the human-generated program has one subrou-
tine (move to and traverse the second set of stairs) that is
only executed once. Observations about human-generated
programs such as these motivate our investigation into what
types of priors people bring to bear when interpreting action
sequences as programs.

Model
Terms and notation

Formally, we model a problem as an undiscounted Markov De-
cision Process (MDP) M, defined by the tuple < S,A,T,R >: a
state-space S; an action set A; a transition function that maps
states and actions to next-states 7 : S x A — S (for now we as-
sume transitions are deterministic); and reward function that
maps states to real values, R : S — R. In the Lightbot domain,
the reward for turning on all the lights is 1, and otherwise 0.
Additionally, once the task is solved, the environment “termi-
nates” and no more actions can be taken.

In the context of problem-solving, we can think of a program
as a sequence of instructions that solves a problem (or not).
Instructions can be primitive actions that can directly modify
the state of the world (e.g. jump can move the Lightbot agent
to a new height and location in the grid). They can also be sub-
process calls that are themselves sequences of instructions.
Formally, then, we define a program 7 as a set of processes,
T = {Gg,G],...,GN}, where each subprocess is a sequence
of instructions, 6; = (ci0,¢i1, ..., Cim;). Each instruction is ei-
ther a ground action or a subprocess call, and we define a
special root subprocess, Groot € T, that cannot be an instruc-
tion. By convention, we always set Groot = Gg. Thus, for each
J-thiinstruction of sub-process i, ¢; j EAUT \ ORoot-

S)SJS)SRWRS]S|SJS|SLWLS|S)S|SRJRWWWLWLS)S]S|SRWRSJS)SJS)SLWLS]S)S)S

(a] o mmomEmEEEEETT e

s;s;s;smsulwmmmm Jawwwlwisj$

Figure 1: An action trace with multiple programs and equal
subprocesses (four). (a) Lightbot domain and path in yellow.
The goal of Lightbot is for the agent to turn on all the lights
(blue squares) by moving around the grid. (b) Sequence of
actions in the trace as a string (S = switch light on/off; J = jump
forward; W = walk forward; L = turn left; R = turn right). (c) The
execution tree of a human-produced program with description
length of 33 that produces the sequence. Calls by a subpro-
cess are represented by the same color. Subprocesses can
call actions or other subprocesses. (d) The execution tree of
an algorithmically generated program with description length
26.

A program T is a well-defined abstract object, but it only
becomes meaningful once it is executed. A subprocess o; is
executed by calling each instruction c; ; in order. If in state
s, ¢;,j is a ground action a, then that action is taken and the
environment transitions to the next state s’ = T'(s,a). Other-
wise, if ¢; ; is a subprocess, then that subprocess is executed.
To execute a program T, we execute its oot from an initial
state so. When 7 is executed from sg, it produces a unique
state-action trace, § = (so,ao,s1,ar,...,s7,ar). It also yields
a unique execution tree, an ordered tree where leaf-nodes are
primitive actions in the trace ordered by time, non-leaf nodes
are subprocesses, and edges indicate the parent subprocess
for each instruction.

Priors for program induction

The problem of hierarchical program induction from observed
behavior can be formalized as Bayesian inference over pro-
grams. An observer is given an action trace, {, and infers a
posterior distribution over programs. This will be based on a
deterministic likelihood p(|) that is zero or one depending
on whether a program T produces the action trace {, and a
prior over policies, p(m):

p(C| m)p(m)
Ywenp(&|n)p(n')

The denominator contains a normalizing term that is a sum-
mation over I1, the set of all possible programs. Note that be-
cause the likelihood, p(C | &), is deterministic, we can approx-
imate this value by drawing samples from the set of programs

p(n[) =

(1)

INSTRUCTIONS
Walk
Turn Right
Tumn Left

:

PROCESS 2

Light

Figure 2: Basic interface for Lightbot paradigm. Participants
can write simple programs for an agent whose goal is to walk
around a 3D grid and turn on all the blue lights.

consistent with the trace rather than the set of all programs.
However, even this constrained set is extremely large and dif-
ficult to sample from. In this work, we sample programs by
partially enumerating the space of all consistent and reason-
able programs, where a program is reasonable if all subrou-
tines have at least two instructions and are called at least two
times (this rules out degenerate subroutines that necessarily
increase the total program length).

The goal of this work is to characterize the prior p(m) that
informs people’s estimation of p(n |). This prior could be
represented in many ways, but here we assume that it takes
the following form:

p(m:0) o< exp{6'o(m)}, 2)

where ¢(m) is a feature vector and 6 is a weight vector. That
is, the log prior probability of a program is a linear combina-
tion of features of that program—commonly known as a max-
imum entropy model (Berger, Pietra, & Pietra, 1996). Making
the (strong) assumption that we have identified an appropriate
0, we can formulate the problem of characterizing priors over
programs as the the problem of inferring 6 given samples from

p(r]C:9).
Program features

Under the standard Kolmogorov prior (Ming & Vitanyi, 1990;
Chater & Vitanyi, 2003), the probability of a program is in-
versely proportional to the exponentiation of its length. How-
ever, people might be sensitive to additional features of a pro-
gram’s structure. We define three characterizations of pro-
gram structure: (1) A program’s call matrix, which captures
which subprocesses are used by other subprocesses; (2) A
program’s call-type matrix, which captures the number of sub-
process versus action calls made by each subprocess; and
(3) the execution depth counts, which captures the number of
times subprocesses or actions are called at different depths
(starting from a depth of 0 at the root subprocess). Formally,
a program’s call matrix P is an N x N + |A| matrix with rows
corresponding to the N subprocesses, Gy, G1,...On, and the
columns corresponding to the N subprocesses and |A| primi-

tive actions available. P; ; is the number of times that subpro-
cess i calls subprocess/action j (in a single execution). The
call-type matrix T is an N x 2 matrix where, for 6;, T; o is the
number of subprocess calls in 6; and 7; 1 is the number of ac-
tion calls. Execution depth counts are represented by a matrix
D, where entry D; ; is the number of times subroutine j is
called at a depth i.

We can capture a number of program features with these
representations. For instance, the Kolmogorov prior can be
based off of the total length of the program, which is a property
of the call matrix:

M=

Po(T) =

4

N+A
Y P (3)
1j=1

Additional features can be defined that capture aspects of pro-
gram structure, such as the maximum depth of the execution
tree, subprocess specialization, or relationships between child
and parent processes. Table 1 summarizes the program fea-
tures based on a program’s structure matrices, P, T, and D,
that are used in our model.

Table 1: Program Features used in MaxEnt Model. D is the
execution depth counts, T is the call-type matrix, P is the call
matrix, and H is entropy of a vector or set of counts (H(X) =

— Y Llog ¥, where X =Y, x;).

Feature Calculation
Tree depth nrows(D)
Number of Subprocesses N

Mean Subprocess Length %Zilength(ci)

Std. Dev. of Subprocess Lengths SD(length(c;))
Mean Call-type Entropy Y.H(T,.)
Action-Call Entropy y Y H(Piyita4n)
Subprocess Call Entropy v YiH (P o)
Root Subprocess Length length(cp)
Mean Children per Subprocess %Zi,j P ;
Mean Parents per Subprocess ﬁw YijPij
Mean Subprocess Entropy %Z,H (Pio:ja)+n)
Mean Action to Non-Action Ratio %Zi %

Experiment

Our experiment had participants observe the problem-solving
behavior of another agent and attempt to reconstruct the pro-
gram that produced that behavior. In particular, we were in-
terested in whether people’s program induction was guided by
factors other than a possible program’s description length.

Paradigm

To assess what program features are more highly weighted
in people’s priors, we use an experimental paradigm based
on the Lightbot game (https://lightbot.com) (Sanborn,
Bourgin, Chang, & Griffiths, 2018) Figure 2. In the Lightbot

game, participants write simple programs for an agent repre-
sented as a robot. The robot inhabits a 3-dimensional block
world, and its goal is to turn on all the light tiles (blue) on the
grid. There are 5 primitive actions (walk, jump, turn right, turn
left, and toggle light). Participants can also store sequences
of primitive actions as sub-processes. These sub-processes
can be called by the main program, by one another, or even
by themselves. These last two possibilities allow participants
to write programs with simple recursion.

Method and Procedure

Mturk participants completed a tutorial involving three simple
examples of the Lightbot task, including explanations of how
to write and use sub-processes. They could construct pro-
grams by dragging, dropping, and deleting instructions into a
program frame and could test their program at any time, which
initiates an animation of the agent executing the program 2.

In the main portion of the task, participants were given one
of two sets of six puzzles and solution trajectories. Partici-
pants were given a video showing an animation of the trace
and could pause, rewind, or replay the trace as many times
as they wanted as they constructed their own program. They
were told that they would receive a bonus based on how
closely the program they wrote matched the program that gen-
erated the trajectory. On each trial, once a participant wrote
and ran a program that turned on all the lights, the experiment
progressed to the next puzzle. They also had the option of
skipping a level after six minutes without receiving a bonus.

After removing subjects who failed to complete the exper-
iment or reported difficulties with the interface, we were left
with a total of 77 subjects. We additionally constrain our analy-
ses to only those solutions that exactly match the traces given
to the participants. Due to a technical error, 47 participants
were assigned to the traces from set 1 condition, and 30 to
set 2.

Humans vs. randomly-sampled programs

We first compare the values of our defined features for pro-
grams written by participants and programs randomly sam-
pled from the space of possible programs that are consis-
tent with the given trace. We fit a mixed generalized lin-
ear model with the twelve defined features as main effects
and program trace as a random effect. We find a signifi-
cant difference between the human-induce programs and the
randomly-sampled programs for all features (p < .05) except
for action entropy (x> = .12; p = .72), and action call entropy
(x* =3.39;p = .07).

Figure 3 shows empirical values for randomly sampled pro-
grams and human-induced programs for six of the twelve fea-
tures: total program length, tree depth, main program length,
mean sub-process length, number of sub-processes, and call
type entropy. Humans induce programs that are longer and
have shallower trees than randomly-sampled consistent pro-
grams. Humans also write programs that have a shorter main
program, use fewer, longer sub-processes, and are lower en-
tropy in terms of call type. That is, humans show prefer-

empirical feature values for
humans vs. randomly generated programs

number of

total program length .| Sub-processes

tree depth

1.0

mean mean
sub-process length call type entropy

Figure 3: Empirical feature values compared to randomly gen-
erated program feature values. Bold line represents mean val-
ues while thin lines represent individual traces.

ence for offloading actions from the main program into sub-
processes, inducing a compact main program that consists of
repeated calls to a few sub-processes. This may align with
the cognitive interpretation of the main program as a working
memory space in which planning takes place and the sub-
processes as stored representations—uwith the preference for
a shorter main program according with the well-known stor-
age constraints on working memory. It is important, however,
to keep in mind that the "random” programs are constrained
to be reasonable (defined on page 2), ruling out an infinite
number of programs that have lengthy subprocesses that are
never used. Thus, our findings do not conflict with previous
work indicating that humans prefer to write shorter programs
(Sanborn et al., 2018).

Modeling Results

We now turn to an evaluation of our full model against the Kol-
mogorov model that considers program length alone. We be-
gin by fitting the model with all features to a subset of the hu-
man data by maximum likelihood estimation. The Kolmogorov
model has fixed weights, -1 for length and 0 for all other fea-
tures. We then evaluate each model on a held out test set of
human programs. For each program in this set, we generate a
randomly sampled program from the space of programs con-
sistent with the corresponding trace. We then compute unnor-
malized log probabilities for the two sets (human and random)
under each model. Because the scores assigned by the two
models have different normalizing constants, we cannot com-
pare them directly; however, we can still compare the ability
of the models to distinguish between human and random pro-
grams using a non-parametric Wilcoxon signed-rank test. We
use a one-sided test because a higher score corresponds to
higher probability of human generation.

We repeated this procedure five times, training on four fifths
of the data set and testing on the remaining fifth (a five-fold
cross-validation). For all five folds, we find that the ranking
produced by the full model produces a significant U statistic

(p < 0.05). In contrast, the Kolmogorov model is significant
in none of the folds (p > 0.8). Indeed, this is unsurprising
given the empirical distribution of program length in human
vs. random programs (Figure 3).

Discussion

In previous work, we have found that humans show a pref-
erence for solutions that are more compressible and yield
shorter programs when generating solutions to Lightbot puz-
zles (Sanborn et al., 2018), in accordance with the normative
Kolmogorov prior for minimizing program length. However, we
find that humans do not simply optimize program length alone
and are sensitive to other structural properties of programs. In
this paper, we explicitly examine a number of such properties
and propose a framework for modeling program induction as
Bayesian inference over programs parameterized by such fea-
tures. Empirically, we find that humans show a preference for
programs that offload complexity to sub-processes, yielding
shorter and simpler main programs, and show that our model
provides a better fit to the human data than a model possess-
ing a simple Kolmogorov prior alone.

In future work, we will conduct additional model compar-
isons to identify which of the program features we have pro-
posed here are necessary to explain human choices. In ad-
dition, we plan to apply our model of program priors to the
more unconstrained task of generating programs given a puz-
zle without a solution trace.

Acknowledgments

This work was supported by Air Force Office of Scientific Re-
search grant number FA9550-18-1-0077.

References

Berger, A. L., Pietra, V. J. D., & Pietra, S. A. D. (1996). A
maximum entropy approach to natural language process-
ing. Computational linguistics, 22(1), 39-71.

Chater, N., & Vitanyi, P. (2003). Simplicity: A unifying principle
in cognitive science? Trends in cognitive sciences, 7(1),
19-22.

Ming, L., & Vitanyi, P. M. (1990). Kolmogorov complexity
and its applications. In Algorithms and complexity (pp. 187—
254). Elsevier.

Sanborn, S., Bourgin, D., Chang, M., & Giriffiths, T. (2018,
July). Representational efficiency outweighs action effi-
ciency in human program induction. In Proceedings of the
40th annual cognitive science society.

		2018-08-20T14:49:57-0500
	Preflight Ticket Signature

