
Incorporating an adaptive learning rate in a neural
model of action selection

Sverrir Thorgeirsson (sverrir.thorgeirsson@uwaterloo.ca)
Brent Komer (bjkomer@uwaterloo.ca)

Chris Eliasmith (celiasmith@uwaterloo.ca)
Centre for Theoretical Neuroscience, University of Waterloo 200 University Avenue West,

Waterloo, ON, Canada, N2L 3G1

Abstract
In previous work, we have implemented spiking neuron
models that use a biologically realistic action selection
system to solve complex cognitive tasks, including the
Tower of Hanoi and semantic memory search. However,
such models often require the fine-tuning of multiple pa-
rameters so that the model can reach a desired level of
performance. Recently, we demonstrated that a local,
online learning rule, which only requires a single param-
eter, the learning rate, is sufficient for teaching our model
how to solve a general cognitive sequencing task. Here,
we refine our method by showing that adding adaptive
learning is more robust regarding our choice of parame-
ters, and will achieve better performance on all versions
of the cognitive task that we tested. These results pro-
vide a foundation for building complex cognitive models
that require no hand-tuning of parameters.
Keywords: neural engineering framework; neural production
systems; spiking neurons; metaplasticity; adaptive learning
rate; basal ganglia; semantic pointer architecture

Introduction
The work in our research group is centred on using spiking
neuron models to build biologically realistic models that can
perform complex cognitive tasks. Our group has constructed
Spaun (Eliasmith et al., 2012), a very large-scale (2.2 million
neuron) model that can perform multiple cognitive tasks, but
we have also built models that can solve the Tower of Hanoi,
perform sentence parsing, solve bandit tasks and so forth,
all using the Neural Engineering Framework (NEF; Eliasmith
& Anderson, 2003) and Semantic Pointer Architecture (SPA;
Eliasmith, 2013).

Until recently, our approach to building spiking neural mod-
els that can solve cognitive tasks has required us to hand-
tune of a set of parameters before the models can be initial-
ized. This can be both challenging and time-consuming, which
is why we showed in a soon-to-be-published paper (Stewart,
Thorgeirsson, & Eliasmith, in press) how a local, online learn-
ing rule can be used to learn the required parameters. In
a more recent paper (Thorgeirsson, Stewart, & Eliasmith, in
press), we showed that this approach can also be applied
on larger version of the original cognitive task that we tested,
but it still requires us to specify a one-dimensional parameter
called the learning rate.

Our results showed that although the approach is easier
than tuning a large number of parameters, finding a learning

rate can be difficult. First, there is a narrow range of learn-
ing rates such that the model will perform well. Second, the
learning rate is not robust regarding the size of the task; cer-
tain values will perform well for large versions of the task and
poor for small versions, and vice versa.

Our goal with this paper is to present an updated version
of the algorithm using an adaptive learning rate, in order to
solve the two aforementioned problems. Furthermore, we
wish to use a biologically implementable version of the learn-
ing rule algorithm, considering that there is evidence from
neuroscience that the brain contains mechanisms for modu-
lating its rate of learning while an animal is performing a task
(Farashahi et al., 2017; Abraham, 2008; Müller-Dahlhaus &
Ziemann, 2015).

Neural Engineering Framework and Semantic
Pointer Architecture

The NEF provides a means of producing a spiking neural net-
work from a mathematical description of a desired function.
This allows the creation of biologically plausible models based
on the theory of the functions being computed in the brain.

The core principles of the NEF are representation, transfor-
mation, and dynamics (Eliasmith & Anderson, 2003). The first
principle provides a means of using neural activity as a basis
for representing vectors of arbitrary dimensionality. Represen-
tation is achieved through nonlinear encoding via the tuning
curves of the neurons and a weighted linear decoding. The
second principle allows transformations of the represented in-
formation through an alternate weighted linear decoding that
approximates the desired function. The third principle states
that neural representations can be analyzed as control theo-
retic state variables and control theory can be applied to this
time varying dynamic system.

The SPA specifies several architectural components and
representational strategies for building spike-based cognitive
models. Of particular interest to this work is the basal ganglia-
thalamus-cortex loop, which we focus on as the main se-
quencing controller, and whose use is described more in the
next section. In addition, we use the symbol-like representa-
tions, semantic pointers, suggested by the SPA to represent
cognitive states, inputs, and outputs. We identify these repre-
sentations with all caps (e.g., ’ONE’), which should be inter-
preted as the name of a high-dimensional vector that is rep-
resented in spiking neurons. All processing in the model is
performed at the level of spiking neurons.



Neural Action Selection using a Basal-Ganglia
Model
To perform action sequencing, we use a neural implemen-
tation of the cortex-basal ganglia-thalamus system (Stewart,
Choo, & Eliasmith, 2010). The model consists of visual in-
formation, a working memory, the state of the motor system,
and other critical components of the human neural action se-
lection system. To compute the utility of actions, we use the
connections between the cortex and the striatum in the basal
ganglia. The basal ganglia will then select the largest of those
utility values, and the corresponding action will be selected via
connections from the basal ganglia to the thalamus.

Cognitive Task
In a previous paper (Stewart et al., in press), we introduced
a simple cognitive task for testing a learning approach. The
cognitive task has two cortical state vectors called LETTER
and NUMBER and six actions called A, B, C, ONE, TWO and
THREE. When the system is run, the model’s visual system
(v) will alternate every second between the symbols LETTER
and NUMBER via an external input. Meanwhile, the model’s
working memory state (m) should cycle through the symbols
A, B and C or ONE, TWO and THREE, respectively.

The expected behavior can be modeled by the following
production system:

IF THEN
v = LETTER AND m =A m = B
v = LETTER AND m =B m = C
v = LETTER AND m =C m = A
v = LETTER AND m =ONE m = TWO
v = LETTER AND m =TWO m = THREE
v = LETTER AND m =THREE m = ONE

To exhibit this behavior in a neural model, we organize the
neurons to compute six utility functions (one for each action),
and then select the action with the highest utility. The following
six equations can be used:

U1 = α1 · v ·LETTER+β1 ·m ·A
U2 = α2 · v ·LETTER+β2 ·m ·B
· · ·
U6 = α6 · v ·NUMBER+β6 ·m ·C

In order to find the optimal parameters αi and βi of the utility
functions without hand-tuning them before the model is run,
we proposed that an online learning rule could be used. The
rule is based on the delta rule (Widrow & Hoff, 1960), which
can be described in this way:

∆ωi, j = αxi(t j− y j)

where ωi, j are weights on values xi that produce y j. The
target value is t j and the learning rate is α. The parameters
are initialized to zero. This implies that then adjusted based
on the model’s performance, using a supervised signal.

There exist two options for calculating the output y j; first,
it can equal the represented output of the neural system (i.e.
y j =∑i ωi, jxi), which is in the range [0,1]6. The second option
is to choose the output of the basal-ganglia action selection
system (i.e., y j = 1 if the action j is selected, otherwise y j =
0).

For the learning input xi, there are also two options. The
first option is that we use the base terms from the aforemen-
tioned equations that determine the utility functions Ui. Al-
ternatively, we can let xi represent the neural activity in the
cortical neurons that are calculating the utility functions. The
second approach often gives better performance since it in-
creases the range of possible functions that can be found by
our learning rule, however, it means that the number of pa-
rameters increases substantially, so for this paper we chose
the former approach.

In a second paper (Thorgeirsson et al., in press), we ex-
panded this task to test the scalability of the learning rule in
the context of our cognitive model. To that end, we let the
number of cortical state variables shown in the visual system,
called alphabets, equal some positive integer n, and the num-
ber of symbols in each alphabet equal a positive integer m,
so that the number of actions equals n ·m. We call the re-
sulting model a generalized sequencing task (n,m) for short.
For example, the generalized sequencing task (3,4) may have
the state variables LETTER, NUMBER and ORDINAL and the
actions A, B, C, D, ONE, TWO, THREE, FOUR, FIRST, SEC-
OND, THIRD, FOURTH.

Gradient descent and adaptive learning rate
algorithms

The results of applying the spiking delta rule on the gener-
alized sequencing task suggest that this learning rule is not
robust regarding the learning parameter α. In a version of the
task that contains five alphabets with five symbols each (i.e.,
25 actions in total), the model did not learn the task success-
fully when the learning rate was set to 10−9 and 10−11, but
it managed to do so in a reasonable time frame for the learn-
ing rate 10−10. Furthermore, our results showed that different
versions of the task required different learning rates; when
the model contains ten actions, our results showed that the
model is on average eight times as fast in solving the task for
the learning rate 10−9 than for the learning rate 10−10, even
though using the former learning rate did not perform well for
a higher number of actions.

We would like to use a biologically plausible variant of our
delta learning rule that also adjusts the parameter α based
on the model performance. That way, we hope to be able to
successfully and quickly perform different versions of the gen-
eralized sequencing task that contains an arbitrary amount of
actions. Furthermore, the learning rule should be robust re-
garding the choice of any hyperparameters.

In recent years, several adaptive learning rate algorithms
have been proposed in machine learning literature and have
been used successfully on real-life problems. Four of those



include ADAGRAD (Duchi, Hazan, & Singer, 2011) an algo-
rithm which divides the learning rate α by the root of the sum
of squares (RSS) of previous gradients; RMSProp (Tieleman
& Hinton, 2012), which we used in this work and is defined be-
low; ADADELTA (Zeiler, 2012), which is similar to RMSProp
but does not require a learning rate; and ADAM (Kingma &
Ba, 2014), which is an improvement over RMSProp according
to its authors, but in our view, it is harder to implement in a
biologically realistic setting since it requires the computation
of both first and second moment estimates.

The RMSProp algorithm divides the learning parameter α

by the root of the exponentially decaying average of squared
gradients that have been calculated at the previous timesteps
plus a small number to avoid division by zero. In other words,
we divide α by the value√

t

∑
i=1

g2
i ·at+1−i + ε

where gi is the gradient at time step i for a single parameter.
According to Tieleman and Hinton, the values a and ε can be
set to the default values of 0.9 and 10−3 respectively, which is
what we did in this paper.

Experimental Setup
When simulating the generalized sequencing task (n,m) un-
der our implementation of RMSProp, we follow the same pro-
tocol as in our previously documented experiments; we let
each cycle consist of a presentation of all m alphabets in the
visual system and alternate between cycles where learning is
on and where learning is off (i.e., on-off learning).

To evaluate the model performance, we use the same met-
ric as in our most recent paper; we return the index of the first
cycle where the model manages to consecutively complete
every transition in every alphabet. For instance, for the model
(2,2) with the symbols A, B and ONE, TWO, we would re-
turn the index of the first cycle in which the model manages to
successfully complete the round A→ B→ A when the visual
system is showing LETTER and completes ONE→ TWO→
ONE when the visual system is showing NUMBER.

We collected the average result of running multiple itera-
tions of the results of the model for different random seeds,
which affect how our neural simulator sets various proper-
ties of the neurons such as maximum firing rates and tun-
ing curves. We let the model perform the tasks (n,m) for
n,m ∈ [3,4,5], which gives nine differently sized versions of
the task and means that the number of actions in each task is
in the range [9,16].

We have previously observed that once this evaluation met-
ric indicates that the task has been learned, the model will
continue to perform correctly in all subsequent trials. This jus-
tifies our choice of metric.

Results
The results of our experiment can be seen in Figure 1. For our
baseline delta rule algorithm, we found that when setting the

learning rate α to 10−2 and 10−4, and for any values that are
higher or lower than those, respectively, the model performed
poorly or was unable to learn any version of the task in many
cases. However, for α = 10−3, the model was able to learn
most of the tasks in each simulation trial, as can been seen in
the figure.

Figure 1: The top figure shows how the RMSProp algorithm
performed with 95% bootstrap intervals for α = 10−2 and α =
10−3 using our evaluation metric. The bottom figure shows
the performance of our baseline spiking delta rule algorithm
under the α = 10−3. For the baseline version, the model did
not learn the task within our stopping point 75 cycles for the
tasks (4,5) and (5,5) in the majority of the simulations, so the
mean value of the evaluation results could not be computed.

For the RMSProp algorithm, setting α to 10−2 and 10−3

gave better results on average than the baseline algorithm
did for any value of α and for any version of the task, with
the exception of the easier tasks (3,3) and (4,3) where there
was no statistical performance difference. For RMSProp, we
also tried the parameters α = 10−1,10−4, which gave sig-
nificantly worse results but were nevertheless sufficient for



learning each version of the task.
Interestingly, the results also show that for RMSProp with

the optimal value of α (10−2), the model will solve tasks of
any size in the narrow range of two to four cycles on average.
In other words, the size of the task does not appear to be
a large performance factor here in contrast with the baseline
algorithm, where the task size will impact not only how fast the
model will learn the task but also whether the model can solve
it at all.

Discussion and Future Work

The results show that by using the adaptive learning rate al-
gorithm RMSProp, we can solve both of the problems that we
had previously experienced.

First, we found that there is a fairly wide range of RM-
SProp parameters that not only gives adequate results for all
versions of the generalized sequencing tasks that we imple-
mented, but also performs much better than the baseline al-
gorithm with our version of the delta rule. This indicates that
in the future, we may be able to avoid manual tuning of model
parameters.

Second, we found that this algorithm is robust when it
comes to different versions of the sequencing tasks; we found
no RMSProp parameters that give particularly good results for
small versions of the task and poor results for large versions of
the task, or vice versa. This indicates that for cognitive mod-
els that we may implement in the future, we may be able to
perform generalizations of the tasks without having to adjust
any parameters.

Using this new updated learning rule, we were able to solve
tasks that our model had previously struggled with with a very
large performance improvement. It would be interesting to see
whether this performance holds up for cognitive tasks where
the number of actions is very high (> 100) and whether there
exist some generalized sequencing task (n,m) that the model
is still not able to solve.

Aside from that, our work can be extended in two directions.
First, we would like to apply the same algorithm on more com-
plex cognitive tasks such as our existing Tower of Hanoi model
(Stewart & Eliasmith, 2011), but also other large-scale cogni-
tive tasks that we have not yet implemented. Second, we in-
tend to see if we can adjust the learning scheme used in this
model so that we no longer need a supervised signal, but can
instead use reinforcement learning with the evaluation metric
as a reward function. We believe that the results documented
in this paper provides a foundation for both approaches.

Acknowledgments

The authors would like to thank Terrence Stewart for discus-
sions that helped improve this paper. This work was sup-
ported by CFI and OIT infrastructure funding as well as the
Canada Research Chairs program, NSERC Discovery grant
261453, AFOSR grant FA9550-17-1-0026 and NSERC grad-
uate funding.

References
Abraham, W. C. (2008). Metaplasticity: tuning synapses and

networks for plasticity. Nature Reviews Neuroscience, 9(5),
387.

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradi-
ent methods for online learning and stochastic optimization.
The Journal of Machine Learning Research, 12(2), 2121–
2159.

Eliasmith, C. (2013). How to build a brain [book]. Oxford:
Oxford University Press.

Eliasmith, C., & Anderson, C. H. (2003). Neural engineering:
Computation, representation, and dynamics in neurobiolog-
ical systems [book]. Cambridge, MA: MIT Press.

Eliasmith, C., Stewart, T., Choo, X., Bekolay, T., DeWolf, T.,
Tang, Y., & Rasmussen, D. (2012). A large-scale model of
the functioning brain. Science, 388, 1202-1205.

Farashahi, S., Donahue, C. H., Khorsand, P., Seo, H., Lee, D.,
& Soltani, A. (2017). Metaplasticity as a neural substrate
for adaptive learning and choice under uncertainty. Neuron,
94(2), 401–414.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochas-
tic optimization. CoRR, abs/1412.6980. Retrieved from
http://arxiv.org/abs/1412.6980

Müller-Dahlhaus, F., & Ziemann, U. (2015). Metaplasticity in
human cortex. The Neuroscientist , 21(2), 185–202.

Stewart, T. C., Choo, X., & Eliasmith, C. (2010). Dynamic
behaviour of a spiking model of action selection in the basal
ganglia. In 10th int. conf. on cognitive modeling.

Stewart, T. C., & Eliasmith, C. (2011). Neural cognitive
nodelling: A biologically constrained spiking neural model
of the Tower of Hanoi task. In 33rd annual meeting of the
cognitive science society.

Stewart, T. C., Thorgeirsson, S., & Eliasmith, C. (in press).
Supervised learning of action selection in cognitive spiking
neuron models. In Proceedings of the 40th annual confer-
ence of the cognitive science society.

Thorgeirsson, S., Stewart, T. C., & Eliasmith, C. (in press).
Analysis of learning action selection parameters in a neural
cognitive model. In International conference on cognitive
modelling 2018.

Tieleman, T., & Hinton, G. (2012). Lecture 6.5 - RMSPROP
(Tech. Rep.). Coursera.

Widrow, B., & Hoff, M. E. J. (1960). Adaptive switching circuits.
IRE Western Electric Show and Convention Record, Part
4(Part 4), 96–104.

Zeiler, M. D. (2012). Adadelta: An adaptive learn-
ing rate method. CoRR, abs/1212.5701. Retrieved
from http://dblp.uni-trier.de/db/journals/corr/
corr1212.html\#abs-1212-5701


		2018-08-20T14:49:56-0500
	Preflight Ticket Signature




