Activation alighment: exploring the use of approximate activity gradients in
multilayer networks

Thomas Mesnard (thomas.mesnard@gmail.com)
Montreal Institute for Learning Algorithms, University of Montreal
Montreal H3T 1J4, Quebec, Canada

Blake Richards (blake.richards@utoronto.ca)
Learning in Neural Circuits Laboratory, University of Toronto Scarborough
Toronto M1C 1A4, Ontario, Canada
Learning in Machines and Brains Program
Canadian Institute for Advanced Research

Abstract

Thanks to the backpropagation-of-error algorithm, deep
learning has significantly improved the state-of-the-art in
various domains of machine learning. However, because
backpropagation relies on assumptions that cannot be
met in neuroscience, it is still unclear how similarly effi-
cient algorithms for credit assignment in hierarchical net-
works could be implemented in the brain. In this paper,
we look at one of the specific biologically implausible as-
sumptions of backpropagation that hasn’t been solved
yet: the need for a precise knowledge of the derivative
of the forward activation in the backward pass. We show
that by choosing a simple, drastic approximation of the
true derivative, learning still performs well—even slightly
better than standard backpropagation—and this approxi-
mation seems to play a regularization role. This approxi-
mation would also be much easier for real neurons to im-
plement. Thus, this work brings us a step closer to under-
standing how the brain could perform credit assignment
in deep structures.

Keywords: Backprop; Bio-plausible Algorithm; Feedback align-
ment;

Intoduction

Recently, deep learning has revolutionized artificial intelli-
gence and significantly improved the state-of-the-art in com-
puter vision, speech recognition and many other domains.
This success can be greatly attributed to the power of the
backpropagation-of-error algorithm (Almeida, 1987; Pineda,
1987) (backprop) that enables efficient credit assignment in
deep network structures.

Unfortunately, backprop algorithm relies on computations
that are not feasible in a biological setup. Briefly, some of
the main biologically implausible computations that backprop
relies on are a result of the synaptic weight update proposed
by backpropagation when optimizing a loss L function:

Wi < W, + oAW; )
AW; o< e 1 Wit 6 (ui)hi_ |

with W; being the weights between layer i — 1 and layer i,
e; 11 being the error backpropagated from layer i + 1, u; being

the input to layer i (u; = W;hi—1 + b;), 6’() being the derivative
of the forward activation function, hinl being the transpose of
the forward neuron activations in layer i — 1, and b; being the
bias for neurons in layer i.

The problem for neuroscience, is that three terms in this
weight update carry some degree of biological implausibility:

® ¢, requires a separate error pathway to backpropate the
error without disrupting feedforward processing—there is no
evidence in the brain for this form of segregated feedback
pathway.

° W,-HT requires feedback pathways for the error that
have symmetric synapses to feedforward pathways—true
synaptic symmetry is not guaranteed in a biological neural
network.

e o'(u;) requires a neuron to know the derivative of its output,
which may not be easy to access, especially if the output
involves spiking.

Recent work has attempted to address the biological implau-
sibility of each of these terms.

With regards to the first item, one approach has been to use
the power of multi-compartment neurons to remove the need for
separate backwards pathways to calculate error (Sacramento,
Costa, Bengio, & Senn, n.d.; Guerguiey, Lillicrap, & Richards,
2017). Alternatively, it is possible to use an energy based
framework that enables the network to propagate the impact
of a nudge towards the correct answer, rather than backpropa-
gating an error explicitly (Bengio, Mesnard, Fischer, Zhang, &
Wu, 2017; Mesnard, Gerstner, & Brea, 2016; Scellier & Bengio,
2017).

With regards to the second item, recent work has shown that
by replacing the transpose of the forward weights (i.e WI.L)
by a fixed random matrix (B;1) for the backward computation,
the algorithm can still learn to approximate the correct gradient
(Lillicrap, Cownden, Tweed, & Akerman, 2016; Ngkland, 2016).

For the final item, a recent paper explored the use of an
auxiliary function to replace ¢’(;), and demonstrated that it
can still produce efficient credit assignment, even with spiking
output (Zenke & Ganguli, 2018).



In this paper, we look more closely at the last item. Specifi-
cally, we explore what happens when one uses a highly simpli-
fied auxiliary function, rather than the derivative of the forward
activation function. Unlike (Zenke & Ganguli, 2018), our goal
here is not to make the algorithm work with spiking output.
Rather, we want to examine how the use of a crude approxima-
tion of the derivative of the forward activation alters the relation-
ship to true gradient descent. How is learning impacted? Is the
gradient still being well approximated? Does the relation to the
true gradient change over learning? These are the questions
we address below.

Model

To describe our approach in simple terms, let’s consider a
multi-layer perceptron with input x, forward weight matrix W;
between layer i — 1 and i, 6() the activation function, #; = 6(u;)
the activation of the neurons in layer i with u; being equal to
W;h;_1 + b; with b; the bias in layer i. Let's consider here that
() is the sigmoid function and that our loss is the cross entropy.
Let’s recall that the weight update that backpropagation would
give us is:

AW; o< e 1 Wi1 " o' (ui)h!, (2)

In the same flavor as what (Courbariaux, Hubara, Soudry, El-
Yaniv, & Bengio, 2016) and (Zenke & Ganguli, 2018) proposed,
instead of using the true derivative of the sigmoid activation
function:

/()= 2 — o)1 - o() @

we consider here a drastic, highly simplified approximation,

c*():

6" (x) =

{1 if —2<x<2 )

0 otherwise.

A plot of the sigmoid (i.e 6()), its true derivative ¢’() and
the crude approximation 6*() is shown in Figure 1.

1.0+ /“
0.8+
0.6+ = Sigmoid
> True
0.4 Derivative
: Crude
Approx
0.2+ /\
0o _/ \
T T T
-4 2 0 2 4

X

Figure 1: Plot of the sigmoid function (black line), its true deriva-
tive (red line) and the crude approximation we will consider
(blue line).

Instead of following the true gradient and updating the
weights following eq.2, we replace 6'() by 6*() and therefore
consider now the following weight update:

AW o< e Wit 6" (i) (5)

Note that unlike 6’(), 6*() would be relatively easy for a
biological neuron to compute, even if more complicated spike
trains were being generated using ¢() as a firing-rate. All that
is required is a binary signal indicating whether the firing-rate
is within a given window. This could be easily accomplished
with voltage-gated ion channels. That is not as clear with ¢(),
which requires a much more precise account of the derivative
of the firing rate. Thus, the update given by eq.5 is arguably
more biologically plausible than the update in eq.2.

Results

We trained a multi-layer perceptron with two hidden layers on
MNIST by following the weight update described in eq.5. We
then compared the performance with the same network trained
by following the true gradient and the weight updates proposed
by the classical backpropagation in eq.2. We used the cross
entropy loss, 500 neurons per hidden layers, a learning rate
equal to .1 and a batch size of 20.

100+ —— True Derivative
—— Crude Approximation

Cross Entropy Loss

v v v v
2000 4000 6000 8000
Iterations (x10)

o=

Figure 2: Cross entropy loss during training when using the
true derivative (i.e red line) versus the crude approximation (i.e
blue line).

Figure 2 shows the evolution of the loss function when the
network is trained with the true derivative versus with the crude
approximation described in Figure 1. In both cases, the loss
is quickly going down with a small advantage for the crude
derivative, suggesting that such approximation of the gradient
could actually have a regularization role.



98+

96+

94+

Test Accuracy

924

—— True Derivative
—— Crude Approximation

90=r T T T T
0 2000 4000 6000 8000

Iterations (x10)

Figure 3: Test accuracy on MNIST over training when the
network is trained with the true derivative versus with its crude
approximation.

Figure 3 shows the test accuracy on MNIST during training
when following eq.2 versus eq.5. As suggested by Figure 2,
learning works well in both cases with faster convergence for
the network trained with the approximation of the true deriva-
tive.

@
<

”n
<
K

IS
<

w
<2

Gradient Angle

N
2

—— Hidden Layer 1
—— Hidden Layer 2

,_.
2
K

v v v v v
0 2000 4000 6000 8000
Iterations (x10)

Figure 4: Angle between the update vectors prescribed by eq.5
and the one prescribed by classical backprop.

Finally, Figure 4 shows the angle between the update vectors
prescribed by eq.5 and the one prescribed by eq.2 (the true
gradient) for the two hidden layers. For the last hidden layer,
the angle decreases very quickly and converge towards 22°.
In contrast, the angle in the first hidden layer increases at
the beginning of training, and interestingly, also converges
towards 22°. Why would this occur? We saw, experimentally,
that during training the forward weights scaled up such that
the average of the pre-activation state (i.e ;) of the neurons
in hidden layer i approximately matched the absolute value
of the threshold that we selected in eq. 4 (i.e 2 in this case).
This suggests that the forward weights are able to learn to
scale up such that the input given to the crude derivative is
approximately in the range where the derivative changes and
not in the middle of a flat plateau. Further experiments are
required, but this behavior bears some resemblance to the
feedback alignment mechanism described in (Lillicrap et al.,
2016).

Conclusion

In this article, we examined the use of a very simple auxiliary
function in place of the true derivative of the forward activation

function for backpropagaiton. We found that using such an
approximation actually seemed to improve learning, potentially
helping with regularization. This brings us a step closer to
a biologically realistic framework (Zenke & Ganguli, 2018),
thereby helping us to understand how the brain could do credit
assignment. Our results are promising, and even suggest
that such an approximation might be beneficial in biological
networks. Future experiments will extend these results to other
activation functions and to deeper neural networks.

References

Almeida, L. B. (1987). A learning rule for asynchronous per-
ceptrons with feedback in a combinatorial environment. In
Proceedings, 1st first international conference on neural
networks (Vol. 2, pp. 609-618).

Bengio, Y., Mesnard, T., Fischer, A., Zhang, S., & Wu, Y. (2017).
Stdp-compatible approximation of backpropagation in an
energy-based model. Neural computation, 29(3), 555-577.

Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., & Bengio,
Y. (2016). Binarized neural networks: Training neural net-
works with weights and activations constrained to+ 1 or- 1.
arXiv preprint arXiv:1602.02830.

Guerguiev, J., Lillicrap, T. P, & Richards, B. A. (2017). Towards
deep learning with segregated dendrites. eLife, 6.

Lillicrap, T. P,, Cownden, D., Tweed, D. B., & Akerman, C. J.
(2016). Random synaptic feedback weights support error
backpropagation for deep learning. Nature communications,
7,13276.

Mesnard, T., Gerstner, W., & Brea, J. (2016). Towards
deep learning with spiking neurons in energy based mod-
els with contrastive hebbian plasticity. arXiv preprint
arXiv:1612.03214.

Ngkland, A. (2016). Direct feedback alignment provides learn-
ing in deep neural networks. In Advances in neural informa-
tion processing systems (pp. 1037—1045).

Pineda, F. J. (1987). Generalization of backprop to recurrent
neural networks. Physical review letters, 59(19), 2229.

Sacramento, J., Costa, R. P, Bengio, Y., & Senn, W. (n.d.).
Dendritic error backpropagation in deep cortical microcir-
cuits.

Scellier, B., & Bengio, Y. (2017). Equilibrium propagation:
Bridging the gap between energy-based models and back-
propagation. Frontiers in computational neuroscience, 11,
24.

Zenke, F., & Ganguli, S. (2018). SuperSpike: Supervised
learning in multilayer spiking neural networks. , 30(6), 1514—
1541. Retrieved 2018-05-29, from https://doi.org/10
.1162/neco_a_01086 doi: 10.1162/neco_a_01086



		2018-08-20T14:49:55-0500
	Preflight Ticket Signature




