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Abstract
The way listeners perceive speech sounds is largely de-
termined by the language(s) they were exposed to as a
child. For example, native speakers of Japanese have
a hard time discriminating between American English /ô/
and /l/, a phonetic contrast that has no equivalent in
Japanese. Such effects are typically attributed to knowl-
edge of sounds in the native language, but quantitative
models of how these effects arise from linguistic knowl-
edge are lacking. One possible source for such mod-
els is Automatic Speech Recognition (ASR) technology.
We implement models based on two types of systems
from the ASR literature—hidden Markov models (HMMs)
and the more recent, and more accurate, neural network
systems—and ask whether, in addition to showing better
performance, the neural network systems also provide
better models of human perception. We find that while
both types of systems can account for Japanese natives’
difficulty with American English /ô/ and /l/, only the neural
network system successfully accounts for Japanese na-
tives’ facility with Japanese vowel length contrasts. Our
work provides a new example, in the domain of speech
perception, of an often observed correlation between task
performance and similarity to human behavior.
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Introduction
Humans experience the external world through complex, high-
dimensional sensory interfaces, such as the retina or the
cochlea. Recent progress in machine learning has led to the
development of artificial systems that can handle such complex
sensory inputs and yield performance that sometimes rivals
that of humans (e.g. Xiong et al., 2016; Mnih et al., 2015; He,
Zhang, Ren, & Sun, 2015). Does that mean that these systems
operate in a way that is similar to humans? While the similarity
between computational systems and humans is not a logical
necessity, several studies have reported a correlation between
normative performance of the systems and their ability to pre-
dict human behavior or brain activity (e.g. Yamins et al., 2014;
Banino et al., 2018).

We focus in this paper on the case of speech perception and
ask whether neural network systems, which are more accurate
for speech recognition than hidden Markov model (HMM) sys-
tems, are also better predictors of how humans will confuse
foreign speech sounds. Existing theories of human cross-
linguistic phonetic perception propose that foreign sounds are

mapped onto native categories, and that these categories act
as a language-specific filter affecting how non-native phonetic
contrasts are perceived (e.g. Best, 1995; Flege, 1995). To
model this category filter quantitatively, we train an ASR sys-
tem on a ‘native’ language and then present it with speech in a
‘foreign’ language, which the system transcribes in terms of a
probability distribution over the phonetic inventory of the ‘native’
language (phone-level posteriorgram). We then supply these
‘native’ representations to a simple model of a discrimination
task: the machine ABX evaluation metric (Schatz et al., 2013;
Schatz, 2016). This allows us to measure patterns of confusion
predicted by each model for contrasts of interest and compare
these to human perceptual judgments.

In a previous study (Schatz, Bach, & Dupoux, 2018), we
used this approach to show that HMM ASR systems can cor-
rectly account for some effects that have been empirically ob-
served in human speech perception, including for the difficulty
of distinguishing American English /ô/-/l/ for native listeners
of Japanese (Goto, 1971). However, HMMs are known to be
structurally limited in their ability to model segment duration
(Pylkkönen & Kurimo, 2004), and this may limit their utility as
models of human speech perception. Vowel length contrasts
are common cross-linguistically and are cued by segment du-
ration, making them an ideal test case for determining whether
neural networks are better than HMMs at modeling duration-
based aspects of human speech perception.

In this paper we show that neural network models can predict
the same /ô/-/l/ effect that had been previously captured by
HMM models and that, unlike HMM models, they can correctly
predict that vowel length contrasts in Japanese are easier
to perceive for Japanese native listeners than for American
English native listeners. This provides empirical evidence that
neural network ASR systems are not only better at recognizing
speech, but also at modeling human speech perception.

Methods

We train models on four different corpora of continuous speech,
two in American English—the Wall-Street Journal corpus
(WSJ), consisting of read news articles (Paul & Baker, 1992),
and the BUCKEYE corpus (BUC), consisting of casual spon-
taneous conversations (Pitt, Johnson, Hume, Kiesling, &
Raymond, 2005)—and two in Japanese—the GlobalPhone
Japanese corpus (GPJ), also consisting of read news articles
(Schultz, 2002), and the Corpus of Spontaneous Japanese
(CSJ), consisting of spontaneous relations of personal stories
in front of an audience (Maekawa, 2003). Each corpus is di-



Table 1: Language, training and test set duration, speech register, and number of speakers for each corpus, as well as word error
rates (WER) obtained with each HMM and neural network (NN) ASR systems on the test set of their training corpus.

Corpus Language Train Test Register No. speakers WER HMM WER NN
WSJ American English 19h30 9h39 Read 143 10.7% 8.12%
GPJ Japanese 19h33 9h40 Read 143 23.19% 19.77%
BUC American English 9h13 9h01 Spontaneous 40 63.4% 58.5%
CSJ Japanese 9h11 8h57 Spontaneous 40 39.1% 33.6%

vided into a training and test set; only the training set is used
to train models. The main properties of the corpora for each
system are reported in Table 1, along with the word error rates
(WER) obtained with each system on the test set of its train-
ing corpus. As expected, for each corpus, the neural network
system has a lower WER than the corresponding HMM system.

We train HMM and neural network ASR systems with the
Kaldi speech recognition toolkit (Povey et al., 2011). All in-
stances of each type of model (HMM or neural network) are
trained with the same recipe, adapted from the Wall Street
Journal recipe, using the same default parameter values. We
trained diagonal covariance word-position-dependent triphone
Gaussian mixture model acoustic models with global semi-tied
covariance transforms, linear discriminant analysis features,
and feature-space maximum likelihood linear regression (fM-
LLR) speaker adaptation. We trained deep belief network
acoustic models using the nnet1 kaldi recipe, with unsuper-
vised pre-training, followed by frame-level cross-entropy opti-
mization and sequence-discriminative training. The neural net-
works acoustic models are initialized using the HMM acoustic
models and take as input linear discriminant analysis features
that are fMLLR speaker adapted using the HMM acoustic mod-
els. We refer the reader to the Kaldi documentation for further
technical detail.1 To compute word error rates, we train a word-
level bigram language model on the training set of each corpus
and combine it with the HMM or neural network acoustic model
trained on the same corpus to perform Viterbi decoding of the
test set. To extract frame-by-frame phone-level posteriors (see
next section), we train a phone-level bigram language model
on the training set of each corpus and combine it with the HMM
or neural network acoustic model trained on the same corpus
to obtain Viterbi-smoothed posteriors on the test set of any of
the corpora.

Machine ABX evaluation

To quantify how easy it is to distinguish two phonetic categories
based on representations produced by one of our models, we
use a machine version of the ABX discrimination task (Schatz
et al., 2013; Schatz, 2016). The basic idea is to take two acous-
tic realizations A and X from one of the phonetic categories
and one acoustic realization B from the other category and
to test whether the model’s representation for X is closer to
the model’s representation for A than it is to the model’s rep-
resentation for B. The probability of an error (i.e. X is closer

1See http://kaldi-asr.org/.

to B than to A) for A, B and X randomly chosen in a corpus is
defined as the ABX error rate for the two phonetic categories
according to the model. If it is equal to zero, the two categories
are discriminated perfectly. If it is equal to 0.5, discrimination
is at chance level.

The model’s representation of a vowel or consonant is ob-
tained as a sequence of phone-level posteriorgrams taken
every 10 ms. Posteriorgrams are vectors that indicate the pos-
terior probability, under a particular model, that a time frame
of the speech signal corresponds to each of the possible pho-
netic categories in the language that the model was trained
on. To quantify how close two model representations are to
each other, we use dynamic time warping (DTW) (Müller, 2007)
which allows us to compute similarities between variable-length
speech segments. We use Kullback-Leibler divergence as the
underlying dissimilarity metric in the DTW algorithm.

In the specific ABX task considered here, we only evaluate
triplets where A, B and X occur in the same phonetic context
(same preceding phone and same following phone) and are
uttered by the same speaker. For each phonetic contrast an
aggregated ABX error rate is calculated by averaging over
stimulus order, context and speaker.

Results

American English /ô/-/l/

American English /ô/ and /l/ are much harder to distinguish for
Japanese than for American English native speakers (Miyawaki
et al., 1975). Figure 1 shows that both HMM and neural network
models correctly predict this effect. For both HMM systems
(left panel) and neural network systems (right panel) the two
‘Japanese native’ models (in blue) have a much higher error
rate for discriminating American English /ô/-/l/ than either of
the ‘American English native’ models (in red). Two controls
show that similar to humans, this deficit of Japanese models
is particularly strong for the American English /ô/-/l/ contrast:
although Japanese models are worse than American English
models at discriminating American English consonants on av-
erage, and the American English /w/-/j/ contrast in particular,
the decrease of performance in those cases is much more
moderate. These results were obtained by testing on stimuli
from the WSJ corpus; similar results are obtained when using
test stimuli from the BUC corpus (not shown).
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Figure 1: ABX error rates for HMM systems (left) and neural network systems (right) for the American English /ô/-/l/ contrast and
two controls (using test stimuli from the WSJ corpus). ‘American English native’ (AE) models are in red and ’Japanese native’
models (Jap.) are in blue. A specific deficit of Japanese models on American English /ô/-/l/ is clearly visible. Error bars indicate
mean plus and minus one standard deviation and were obtained by resampling the ABX errors at the level of speakers.
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Figure 2: Average ABX error rate over all Japanese vowel length contrasts and all vowel quality contrasts for HMM systems (left)
and neural network systems (right) using test stimuli from the GPJ corpus. ‘American English native’ models (AE) are in red
and ‘Japanese native’ models in blue. The x axis indicates the corpus on which the model was trained. While both HMM and
neural network ‘Japanese’ models outperform ‘American English’ models on vowel quality contrasts, for vowel length contrasts the
‘Japanese’ HMM model trained on the CSJ corpus does not have a clear edge over ‘American English’ models. Error bars as in
Figure 1.
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Figure 3: As in Figure 2, but using test stimuli from the CSJ corpus. Both of the ‘Japanese’ HMM models do not appear much
better than the ‘American English’ models at discriminating Japanese vowel length contrasts.

Japanese vowel length

Each of the five Japanese vowels comes in a long and a
short version which are phonemically contrastive (i.e. they
need to be distinguished to properly identify certain words
in Japanese). Long and short vowels are believed to differ
primarily in their duration, making this an ideal test case for
distinguishing models’ ability to capture human-like perception
of duration. Japanese vowel length contrasts are easier to
perceive for Japanese natives than for American English na-
tives (Hisagi, Shafer, Strange, & Sussman, 2010). In Figure
2, stimuli from the GPJ corpus are used to test the ability of

HMM (left) and neural network (right) models to discriminate
Japanese vowel length. In Figure 3, test stimuli from the CSJ
corpus are used. Discrimination scores for Japanese vowel
quality contrasts (contrasts between two different short vowels
or two different long vowels) are also reported, as a control.

For HMM models, ‘Japanese native’ models (in red) appear
clearly better than their ‘American English native’ counterparts
(in blue) at discriminating Japanese vowel length in just one
case: when testing the model trained on GPJ with test stimuli
from that same corpus. The result does not generalize when
the same model is tested with stimuli from the CSJ corpus



instead. The HMM model trained on the CSJ corpus does not
appear better than the ‘American English native’ models, irre-
spective of whether it is tested with stimuli from the CSJ or GPJ
corpus. This indicates that HMMs are—at best—inconsistent
in their ability to capture the relevant duration cues for distin-
guishing phonemic vowel length in Japanese. They can learn
to represent duration categories only in a corpus-specific way,
and have trouble learning even corpus-specific representations
when trained on a corpus of spontaneous speech.

In contrast, both of the ‘Japanese native’ neural network
models are much better at discriminating vowel length than
either of the ‘American English native’ neural network mod-
els when tested with either GPJ or CSJ stimuli. In particular,
the ‘Japanese native’ neural network models are better than
the ‘American English native’ models at discriminating vowel
length, even when tested with stimuli from a different corpus
than the one on which they were trained. This generalization
across corpora provides strong evidence that the ‘native bene-
fit’ effect observed with neural network models on Japanese
vowel length contrasts reflects a genuine language-specificity
of the learned representations that, unlike for HMMs, cannot
be explained away by channel effects associated with spe-
cific recording conditions. Finally, let us emphasize that, when
trained on American English, even neural network models do
poorly at discriminating Japanese vowel length. This is impor-
tant, because it shows that neural networks are not just better
overall at processing duration, independently of training con-
ditions (one could imagine, for example, that neural networks
trained on American English would pick up on informative du-
ration cues from American English tense/lax vowel contrasts,
which involve duration). Rather, similar to humans, a facility for
Japanese vowel length discrimination is observed only for the
‘Japanese native’ neural network models.

Conclusion

While both HMM and neural network models correctly predict
that American English /ô/ and /l/ are very hard to discriminate for
Japanese native listeners, only neural network models appear
to robustly predict that Japanese vowel length contrasts are
easier to perceive for Japanese natives than for American
English natives. These results suggest that, in addition to being
better from a normative point of view (i.e. better at recognizing
speech), neural networks also constitute better predictors of
human cross-linguistic speech perception patterns.

More generally, we have introduced a method for generating
quantitative predictions regarding the discriminability of any
foreign phonetic contrast for native listeners of any language
(given a suitable training corpus). This makes it straightforward
to compare the empirical adequacy of a wide range of speech
processing systems with respect to the many effects reported in
the empirical literature on cross-linguistic phonetic perception.
It would be interesting, in particular, to look for effects that
both HMM and neural network models systematically fail to
capture, as these could point toward better models, both from
the point of view of modeling human perception and, potentially,

for practical applications, such as speech recognition.
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