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Abstract

Language decoding studies have identified word repre-
sentations which can be used to predict brain activity
in response to novel words and sentences (Anderson et
al., 2016; Pereira et al., 2018). The unspoken assump-
tion of these studies is that, during processing, linguis-
tic information is transformed into some shared seman-
tic space, and those semantic representations are then
used for a variety of linguistic and non-linguistic tasks.
We claim that current studies vastly underdetermine the
content of these representations, the algorithms which
the brain deploys to produce and consume them, and
the computational tasks which they are designed to solve.
We illustrate this indeterminacy with an extension of the
sentence-decoding experiment of Pereira et al. (2018),
showing how standard evaluations fail to distinguish be-
tween language processing models which deploy differ-
ent mechanisms and which are optimized to solve very
different tasks. We conclude by suggesting changes to
the brain decoding paradigm which can support stronger
claims of neural representation.
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Ever since the seminal word decoding paper by Mitchell
et al. (2008) researchers have attempted to come up with a
feature space that best captures semantic aspects of language
processing in the brain. Many of those studies refer to a neural
activity pattern evoked by a particular stimulus as a "semantic
representation” of that stimulus. Their goal is to isolate a set
of stimulus features which best capture brain activity. This
paper will argue that the problem the field is trying to solve
is ill-defined: such talk of representation is meaningless un-
less one also specifies the brain mechanisms utilizing those
representations and the task they are designed to solve.

The original decoding study by Mitchell et al. (2008) demon-
strated that a model derived from the co-occurrence patterns
of 25 sensorimotor verbs performed above chance both when
predicting fMRI responses to novel nouns and when selecting
a noun matching a previously unseen fMRI image. Since then,
others have proposed alternate word feature models, based
either on behavioral ratings (e.g., Binder et al., 2016) or on
distributional statistics (e.g., Devereux et al., 2010; Murphy et
al., 2012). A direct comparison of some of those models re-
vealed that their relative performance differs for encoding and
decoding tasks and even varies from subject to subject (Abnar
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et al., 2018). Both the experience-based and the distributional
approaches have recently been extended to sentence-level de-
coding (Anderson et al., 2016; Pereira et al., 2018), and have
begun to use more sophisticated models accounting for context
and grammatical information (Jain & Huth, 2018; Anderson et
al., 2018).

What is a “semantic representation?”

The main goal of a language decoding study is to derive a set
of stimulus-specific linguistic features and estimate how it is as-
sociated with brain activity. If we find that brain activity patterns
can predict these input features, we conclude that the brain
activity contains a “representation” of the features. If those
features reflect semantic properties of the stimulus, the brain
activity pattern earns the label “semantic representation.” Such
representational claims are dangerously weak: they wildly over-
generate, leading us to award the label of “representation” to
brain activity evoked by any arbitrary aspect of the stimulus, so
long as it has some vague relation to the stimulus “meaning”.

In what sense does the above claim overgenerate? Consider
the decoding studies in the line of Pereira et al. (2018), which
use fMRI data from subjects reading a sentence to predict
embedding vectors of the words in that sentence. Embedding-
based representations have been shown to capture many differ-
ent aspects of words, from simple features like word frequency
and logical relationships such as hypernymy (Fu et al., 2014)
to arbitrarily complex features of both syntax and semantics
(Mikolov et al., 2013). While Pereira et al. claim that their de-
coder in this task has learned to read out “linguistic meaning”
from the brain, we could just as well claim that the decoder has
captured “elements of syntax” or “hypernymy relations.”

People are obviously doing more than reasoning about syn-
tax or hypernymy relations when reading a sentence. But
such decoding results are consistent with all of these claims.
In short, the decoding approach underdetermines the actual
nature and function of neural computations.

Representations do not exist in a vacuum. They are com-
puted by specific neural mechanisms, and are consumed by
other systems for the purpose of producing behavior. Claims of
“semantic representation” without an accompanying description
of such mechanisms are dangerously underspecified. In light of
these conceptual issues, philosophers concerned with neural
representation have concluded that representational claims are
incomplete without a description of the associated producing
and consuming mechanisms (Papineau, 1992; Dretske, 1995).

We demonstrate this incompleteness by drawing on neural
network models from natural language processing which pro-
duce intermediate representations of input sentences. These
representations are importantly not produced in a vacuum:



they are optimized to best help their corresponding model suc-
ceed in some downstream task. We select a wide range of
models, ranging from machine translation to image-caption
retrieval. We re-run the experiment of Pereira et al. (2018)
by learning decoder models that map the subjects’ fMRI data
recorded while listening to a sentence to a neural net repre-
sentation of that sentence. Representations from all but one of
the neural nets perform above chance in our decoding trials,
suggesting that brain activity captures some representational
elements within each of these task-specific models.

Of course, we do not take this result to imply that subjects
are jointly solving machine translation and image-caption re-
trieval tasks while reading sentences. We instead take it to
imply that the current decoding evaluation method is too weak:
it underdetermines both the task being solved by the subject
and the neural mechanisms deployed to solve that task. We
conclude by proposing a move away from target models based
on simple feature-response correlations toward target mod-
els which make explicit commitments to the operant task and
neural mechanisms designed to solve that task.
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Figure 1: We train decoder models to predict intermediate
representations of neural network models for natural language
processing tasks. A model performing machine translation is
shown here.

We perform a decoding experiment, mapping from the brain
activations of subjects to the intermediate representations of
various neural network models for natural language processing.
We use brain imaging data from Pereira et al. (2018, exper-
iment 2), who presented subjects with 384 sentences, each
involving one of 180 different common words. Each subject
was instructed to carefully read each sentence, presented one
at a time. The subjects’ brain activity in response to each
sentence was saved to be used as inputs for decoding trials.?

Sentence representations Table 1 summarizes the neural
network models used to produce target representations in our
experiments. We select a large class of models which share a
single architectural feature: each model takes a sentence as
input, computes a high-dimensional vector representing that

2For more information on imaging methods and data preprocessing,
please see Pereira et al. (2018).

Name Task Architecture

GloVe

Distributional modeling GloVe (Pennington et al., 2014)

1

2 skipthought Language modeling LSTM (Kiros et al., 2015)

3 InferSent Natural language inference  LSTM (Conneau et al., 2017)

4  DisSent Discourse understanding BiLSTM (Nie et al., 2017)

5 ConvS2S Machine translation CNN-+attention (Gehring et al., 2017)
6 order Image caption retrieval LSTM (Vendrov et al., 2015)

7 IMDB Sentiment LSTM (vanilla)

Table 1: Models used to compute target sentence representa-
tions in our experiments.

sentence, and uses this representation to make task-specific
decisions. Each model is trained to produce representations
which help it optimally perform these task-specific decisions. It
is important to note that these models are optimized for vastly
different tasks: the machine translation model, for example,
creates a representation of an English input sentence in order
to output its French translation; the image caption retrieval
model computes a representation of a sentence in order to
match the sentence to the most relevant images in a test set.

Decoding Let r(x;,s;) be the fMRI activity recorded after a
subject s; observes a sentence x;, and r(x;,mg) be the sen-
tence representation output by model my;, given sentence x;
as input. For each subject s; and model m, we learn a ridge
regression which predicts the model’s sentence representa-
tion r(x;,my) given the subject’s fMRI response r(x;,s;). The
training loss for a decoder 0 ;; mapping from brain images of
subject s to representations of model my is as follows:
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(1)
where o is a regularization hyperparameter. For each subject—
model pairing, we train decoder weights 0, on the 384 sen-
tences used by Pereira et al. and the associated brain images.

J(sj,my) =

Evaluation method We evaluate the learned decoders us-
ing the mean average rank metric from Pereira et al. Given an
input brain image r(x;,s;) of a subject s; observing sentence
x;, we use the decoder parameters 0 j; to predict a model rep-
resentation #(x;,my ). We next calculate the cosine distance
between this predicted representation and the known represen-
tations of the 384 sentences. The rank score of a prediction
is the position of the encoding of the actual sentence x; in
the ranked list.® To assign each decoder a single score, we
calculate the average rank score of the decoder’s predictions
for all possible sentences. We take the mean of these average
rank scores across subjects, yielding a single mean average
rank score associated with the model representations:

r(xi,m))  (2)

MAR(my,) Z Zrank Pl my),

3 A perfect model would yield a rank score of 0 on every input; a model

making random predictions would yield a rank score of 4 lx[=192in
our experiments.



Decoding performance with different model targets
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Figure 2: Reverse inference decoding underdetermines the
task being solved. Mean average rank (MAR) metrics cal-
culated on decoders trained to map between subjects’ brain
activity and target representations of models, each optimized
to solve a different task. (Error bars denote bootstrap 95% Cl.)
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Figure 3: Heatmap describing different model representations
used in our evaluation. Each cell describes the r> regression
metric for mapping the representations of the row’s model to
representations of the column’s model. (Numbers refer to rows
of Table 1, and are ordered as in Figure 2.)

Results We compare the performance in our seven decoder
trials, each of which attempts to map subject brain activity to the
representations of one of seven target model representations.
The results are shown in Figure 2. All decoders perform better
than chance, except the decoder predicting activations of the
sentiment analysis model. The four highest-performing models
(achieving at best a MAR metric of ~100) do not differ signifi-
cantly in performance.* Note that the most successful models
in these trials were originally optimized to solve a variety of

4Not significant under a bootstrap comparison of 95% confidence
intervals of mean MAR.

different tasks, from predicting the next word in a sentence to
reasoning about the logical entailment relationships between
sentences.

Are the highest-performing models performing well in our
evaluation because they replicate overlapping aspects of the
subjects’ brain activity, or because they incorporate comple-
mentary features of brain activity? To answer this question,
we analyze the similarity between each pair of model repre-
sentations. For each model m;, we learn a regression model
mapping its representations to the representations of every
other model m; # m; for each of the 384 sentences in our
experiment. Figure 3 reports the 7> metric of each pairwise
regression evaluation (where row i and column j specify the
r* metric resulting from mapping representations of model i to
those of model j). We can see that the observed pattern mostly
agrees with results from Figure 2: representations that can be
predicted by the baseline model representations can also be
decoded more easily. The four models which yield the highest
decoding performance in Figure 2 are also relatively highly
correlated between one another (Figure 3), suggesting that
these models’ representations share some underlying state
also present in the subjects’ brain images. Nevertheless, the
present framework makes it hard to isolate the aspects of sen-
tence representations that drive the decoders’ performance.

Discussion

We find that state-of-the-art evaluation techniques used in
decoding studies fail to distinguish between sentence rep-
resentations drawn from models optimized for very different
tasks. Decoders trained on representations from 5 out of 6
neural network models that we tested performed above chance,
with three matching the performance of the baseline decoder
trained used in the original study of Pereira et al. (2018).

The four best performing networks (originally trained to pre-
dict distributional information, entailment relations, or discourse
structure) were all designed with the explicit purpose of pro-
ducing task-transferable sentence representations, while the
three networks which fare worse were originally trained in more
narrowly defined tasks (machine translation, image captioning,
and sentiment analysis). Our results suggest that the NLP
community’s quest for a universal sentence representation may
actually be on the right track: these model representations
appear to capture aspects of human sentence processing rel-
atively well.> However, all that the neuroimaging community
gains from such analyses is the knowledge that neural activ-
ity reflects a mechanism which is solving something in the
intersection of these diverse tasks.

If we want to better understand the way linguistic processing
is realized in brain activity, we should adopt target models that
are explicit about both the task which they are optimizing and
the downstream mechanisms which operate on their represen-
tations. Some features might be used by multiple mechanisms
(most of the neural network representations in our analysis

5Wang et al. (2018) evaluate how these representations transfer to
different applied language tasks.



are partially predictive of each other, despite being suited for
different tasks), while others might be exclusive to one or two.
Below, we outline some approaches which we believe could
support more interpretable language decoding studies.

Commit to a specific mechanism and task. In addition to
claiming that brain activity can predict certain stimulus fea-
tures, we should explicitly link those features with gener-
ating or consuming mechanisms. Kay et al. (2008) pre-
sented an encoding model that illustrates this approach.
The model made an explicit mechanistic commitment, using
Gabor wavelet functions to compute features of the image
inputs. This design decision was based on prior knowledge
that early visual cortices use Gabor-like filters to extract
low-level image properties. Their success does more than
indicate that visual cortex “represents images”: it provides
evidence for a specific mechanistic claim about how those
representations are produced.

Subdivide the input feature space. Since language pro-
cessing is complex, it is highly unlikely that brain activity
evoked by a linguistic stimulus resides within some univer-
sal semantic space. Instead, the neural signal reflects the
joint activity of multiple networks that process linguistic in-
put using a wide variety of algorithms, each operating on
its own representation of the input. One way to reflect this
heterogeneity is by specifying several sets of input features,
each of which captures a representation optimized for a
particular task. Wehbe et al. (2014), for example, labeled
every word with a set of visual, syntactic, semantic, and
discourse features. Evaluating the complete model, as well
as models that included only one set of features, allowed
them to determine whether brain activity patterns reflecting
those feature sets overlap, as well as which regions work
with which representations.

Explicitly measure explained variance. Naselaris et al.
(2011) show that decoding models cannot identify the
full set of features that drive a response in a particular
brain region. Encoding models, however, can be explicitly
measured in their ability to explain the activity in a particular
brain region (see, e.g., Wehbe et al., 2014; Anderson et
al., 2018). Future work on language representation should
evaluate the extent to which each model component can
explain the overall fMRI response.

We have demonstrated that current decoding evaluation
methods provide only indeterminate answers to the most im-
portant questions regarding neural representation: what mech-
anisms are responsible for producing and consuming such
representations, and what task are the systems which con-
sume these representations attempting to solve? Devising
mechanistic models, breaking down the notion of semantic rep-
resentation into sub-components, and explicitly testing mech-
anistic models against brain activity all appear to be a fruitful
venues for future research in this domain.
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