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Abstract
The ability to store, represent, and manipulate informa-
tion is a crucial element of processing systems. While
computers are carefully engineered and manufactured to
perform mathematical operations on data, neurobiologi-
cal systems robustly provide similar functions with sub-
stantially more variability in physical brain connectivity
across species and development. In addition, neural sys-
tems can recognize largely unstructured patterns of sen-
sory inputs that cannot always be nicely represented as
discrete static pieces of information. Here we present
a dynamical system that can represent chaotic attrac-
tors, and learn a simple translation operation by example.
Specifically, we train a sparse and randomly connected
reservoir computer system to evolve along two translated
chaotic Lorenz attractors with different initial conditions
embedded in 3 dimensions. During training, we apply a
fourth input that takes a unique constant value for each
attractor. We demonstrate that by driving the trained
reservoir with new values of this fourth input, the reser-
voir is able to extrapolate the translation of the Lorenz
attractor. Together, our results provide a simple but pow-
erful mechanism by which a general dynamical system
can learn to manipulate internal representations of com-
plex information.
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Learning Chaotic Attractors Using Reservoirs
Reservoir computers are a class of dynamical recurrent neu-
ral networks that have been successfully used to classify and
predict time-series data (Jaeger, 2010). The reservoir itself is
a high-dimensional non-linear dynamical system with sparse
and random coupling between states. Typically, the reservoir
states are driven by a low-dimensional time-series signal, and
measured to classify or reconstruct some desired output.

By training the outputs to approximate the inputs, the reser-
voir outputs can be recursively fed back as inputs, causing the
reservoir to autonomously evolve according to the input signal.
This closed-loop architecture has been shown to accurately
reconstruct the dynamics of even chaotic attractors (Pathak,
Hunt, Girvan, Lu, & Ott, 2018), and is a powerful demonstra-
tion of how a simple but large non-linear dynamical system
can easily learn complex attractors. Here, we demonstrate
that a simple external signal can be used to bias the reservoir

dynamics when learning two separate attractors. After clos-
ing the loop, the constant external signal can be modulated
outside of the training values to control the reservoir evolution
along further translations.

Mathematical Framework
We consider an n-dimensional reservoir with states rrr ∈ Rn,
coupled according to adjacency matrix M ∈ Rn×n. We also
consider an input signal sss ∈ Rk coupled to the reservoir ac-
cording to adjacency matrix Win ∈Rn×k, and the output signal
ŝss∈Rk as a linear combination of reservoir states according to
Wout ∈Rk×n. We consider the constant external control signal
c ∈ R coupled to the reservoir by vvv ∈ Rn. Finally, we include
a bias term bbb ∈ Rn. Then the open-loop reservoir evolves as

drrr(t)
dt

= γ(−rrr(t)+ tanh(Mrrr(t)+σWinsss(t))+ c(t)vvv+bbb) .

The inputs are state trajectories of the 3-dimensional Lorenz
dynamical system

dx
dt

= σ(y− x)

dy
dt

= x(ρ− z)− y

dz
dt

= xy−βz,

with states sss = (x,y,z), such that sss111 and sss222 are the two attrac-
tors with the same parameters (σ,ρ,β) with different initial
conditions, where sss222 is translated.

The outputs are given as ŝss =Woutrrr, and we train the output
matrix to minimize the quantity ‖ŝss− sss‖2

2 at every time point.
After training, we feed the predicted output back into the input
to yield the closed-loop dynamics

drrr(t)
dt

= γ(−rrr(t)+ tanh(M∗sss(t)+ c(t)vvv+bbb)),

where M∗ = M∗σWinWout.

Numerical Simulations
The chaotic attractors, and both the open- and closed-loop
reservoirs, were simulated using a 4th order Runge-Kutta ap-
proximation with a time step of ∆t = 0.001. Both attractors
sss1,sss2 were simulated for T = 200, and were used sequentially
to drive the reservoir. For each attractor, the first Tw = 50 mea-
surements were discarded to remove transient states, and the
last Tt = 150 measurements were used for training Wout.



The reservoir was started at an initial state of rrr = 0 with
n = 2000 nodes. The coupling matrix elements were drawn
from a uniform random distribution W ∈ [−1,1]n×n with 0.05
density. Each row of Win had only one element which was
also drawn from a uniform random distribution [−1,1]. The
bias vector bbb was drawn uniformly from [−1,1]n. Attractor sss222
was translated 10 units about the z-axis.

Results

Using the typical Lorenz parameters (σ,ρ,β) = (10,28,8/3),
we generate sss111 and sss222, where sss222 is shifted by 10 units along
the positive z-axis. The reservoir used an input of c = 5 when
training of sss111, and c = 10 when training on sss222. After training
Wout, the closed-loop reservoir was evolved using input c =
15. The training data sss111 and sss222 are shown as the bottom and
middle blue invariant manifolds, and the output ŝss =Woutrrr from
the extrapolated forced input using c = 15 is shown as the
green manifold (Fig. 1).

As can be seen, the reservoir is able to endogenously learn
a translation operation on complex chaotic manifolds from
examples, and execute this computation in the native reser-
voir representation with a simple modulation. We note that
the reservoir initially begins by evolving on manifold sss222 with
c = 10. Then, by switching the control signal to c = 15, the
reservoir evolves smoothly onto the translated green curve.

Figure 1: Plots of invariant manifolds from sss111 and sss222 as the
non-translated and translated Lorenz attractors as the bottom
two blue curves (trained using c = 5 and c = 10, respectively),
and the transformed reservoir outputs ŝss = Woutrrr using a new
control signal c = 15. As expected, the reservoir output has
a continued positive z-translation. The reservoir initially starts
on the sss222 manifold at c = 10, then transitions smoothly via a
change in control signal to c = 15, as shown by the single
large green loop.
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