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Abstract
Brain computation can be understood as the transforma-
tion of representations across stages of processing. The
content and format of a representation is reflected in the
geometry of stimulus-related response patterns. Here we
characterize the representations along the human ventral
visual pathway with a new visualization technique called
“hypersphere2sphere” (H2S). It takes as input a labeled
set of points in a high-dimensional space (the multivari-
ate response space of each cortical region) and fits a hy-
persphere to represent each category. It visualizes these
high-dimensional hyperspheres as a set of spheres in
3D (or circles in 2D), revealing their relative sizes, sep-
arations, and overlaps. Using functional magnetic reso-
nance imaging (fMRI), we measured response patterns to
48 images from four categories (faces, bodies, inanimate
objects, and scenes). We computed unbiased distance
estimates in representational space using crossvalida-
tion. With H2S, we observed the emergence of response
pattern clustering, based on category, at the level of the
lateral occipital complex. Categories also occupy non-
overlapping hyperspheres in face- and place-selective ar-
eas, with faces most spread in the former and scenes in
the latter. H2S provides a useful perspective on high-
dimensional representational geometries that promises
new insights on the basis of hemodynamic and electro-
physiological brain-activity measurements.
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Introduction
To understand brain computation, we need to understand the
representations those computations operate on. Brain repre-
sentations can be characterized in terms of the geometry of
the response patterns elicited by a set of stimuli. Each stimu-
lus elicits a response pattern, which corresponds to a point in
the high-dimensional space spanned by the neurons (or mea-
surement channels, such as electrode sites or fMRI voxels).
To understand the information represented and the format in

which it is represented, we must understand the geometry
of these points. Linear decoding analyses test whether par-
ticular information is amenable to linear readout. Linear de-
coding can reveal, for example, whether two categories are
linearly separable in a brain region’s representational space.
Representational analyses, such as encoding models, repre-
sentational similarity analysis, and pattern component model-
ing (Diedrichsen & Kriegeskorte, 2017), attempt to make de-
tailed predictions about the representations of individual stim-
uli. Here we assume that the stimuli fall into a number of dis-
tributions corresponding to predefined categories. We tackle
the challenge of characterizing the global geometry of those
distributions in representational space, including the spread of
each category and its relationship to the other categories.

Our goal is to visualize each category in terms of its overall
spread, and its separation from, and their overlap with, each
of the other categories. Therefore we want to abstract from
the individual samples of a given category and instead show
a single graphical element to represent all category samples
as a whole. Instead of showing responses to each individ-
ual face, for example, we can show the spread of measured
response patterns to faces. Given that our experiments typ-
ically sample only tens or hundreds of exemplars from each
category, a detailed characterization of the high-dimensional
distribution is unrealistic. Here we explore perhaps the sim-
plest possible model of a high-dimensional category-related
distribution: a uniform distribution within a hypersphere. We
fit a hypersphere to each category in the high-dimensional re-
sponse space and visualize the categories as a set of spheres
in 3D (or circles in 2D). This intuition lends the method its
name: hypersphere2sphere (H2S).

Consider the toy example of a 3D response space and a 2D
visualization space. The true distributions are three spheres
(3D) and the visualization consists of three circles (2D). The
H2S visualization, then, is a planar slice defined by the three
centers of the spheres. Each sphere is represented by a
circle marking the intersection of the sphere and the visual-
ization plane. The resulting 2D set of circles perfectly rep-
resents the pairwise distances between the sphere centers,
the sphere radii, and the overlaps (as measured along the



radii) between the spheres. If there are more categories, then
the pairwise distances, radii, and overlaps along the radii are
approximately represented. More generally, the visualization
can be thought of as a d-dimensional slice through the high di-
mensional space, where d (= 2,3) is the dimensionality of the
visualization space. If the underlying generating distributions
really are uniform within hyperspheres, then up to d +1 cate-
gories can be perfectly represented in the d-dimensional visu-
alization space. For other distributions and larger numbers of
categories, the visualization conveys an approximation to the
overall category-representational geometry.

Unlike multidimensional scaling (MDS) and t-distributed
stochastic neighbor embedding (t-SNE, van der Maaten and
Hinton (2008)), H2S uses category labels and conveys the
overall spread of each category, rather than the location of in-
dividual points. This is useful when data for each category is
limited, as is often the case in neuroscience. Like MDS, but
unlike t-SNE, H2S is distance-preserving; it reduces to MDS
when each exemplar is a separate category. In contrast to
MDS and t-SNE, H2S is not biased by an imbalance in the
numbers of samples across different categories (figure 2e).

We used H2S to visualize the representations of images of
faces, bodies, inanimate objects, and scenes in primary visual
cortex (V1), the second and third visual areas (V2 and V3), the
lateral occipital complex (LOC), the fusiform face area (FFA),
and the parahippocampal place area (PPA).

Methods

Hypersphere2sphere is a dimensionality reduction and visu-
alization method that models high dimensional data distribu-
tions as uniform D-balls (points uniformly distributed within D-
dimensional hyperspheres) and places them as circles in a 2D
embedding or spheres in a 3D one. Briefly, the algorithm (fig-
ure 1a) follows two steps: (1) A uniform D-ball distribution is
fit to the distribution of samples from each category, yielding a
center (a D-vector) and a radius (a scalar) for each category.
(2) The center and radius parameters of the low-dimensional
visualization are optimized to best represent the inferred hy-
perspheres’ center separations, spreads (radii), and overlaps.

For step (1), we use Markov Chain Monte Carlo sampling
to estimate the joint posterior of the centers and radii, as-
suming a uniform D-ball distribution model. Alternatively, one
might choose a different center and radius estimator, trading
statistical for computational efficiency. In general, the stabil-
ity and interpretation of the inferred hypersphere will depend
on the underlying data distribution and the assumptions mo-
tivating the estimator. In low dimensions, the Gaussian dif-
fers markedly from the uniform D-ball distribution in terms of
its long tail. In high dimensions, however, D-ball and Gaus-
sian distributions converge, concentrating in a thin shell that
is well represented by a hypersphere (figure 1b). For step (2),
we place the centers using MDS with metric stress (Young &
Householder, 1938; Torgerson, 1952) as the optimization cri-
terion. The radii of the visualization spheres are the means of
the marginal posteriors of the hypersphere radii.
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Figure 1: Hypersphere2sphere intuition and motivation.
(a) The hypersphere2sphere (H2S) algorithm. (b) Histograms
of each point’s distance from the center of a uniform ball
(black) or Gaussian distribution (red) with different dimen-
sionalities. Histograms are normalized so that their maxima
match. The distribution types converge in high dimensions to
a delta function at 1—the distribution for a uniform unit hyper-
sphere.

Simulations. We tested H2S on simulated data in 3D and
200D, and compared it to other dimensionality-reducing visu-
alization techniques: principal components analysis (PCA),
MDS, and t-SNE. For equal radius D-balls touching at one
point (figure 2a), all methods give similar results when D = 3
(left). When D = 200 (right), however, all but H2S exagger-
ate the spatial separation between the two distributions, and
MDS distorts the distribution shapes. For concentric balls with
different radii (figure 2b), all visualizations correctly show the
smaller (red) distribution surrounded by the larger (black) one.
However, the configuration of the distributions changes sub-
stantially as the dimensionality grows for all methods except
H2S, which stably and correctly represents the geometry re-
gardless of dimensionality. When the smaller inner ball is
touching the larger ball at one point (figure 2c), H2S reflects
the fact that the two balls are touching at one point in both
the 3D and 200D cases, while this fact is completely lost for
the other visualizations of the 200D data. Similarly, when two
equal-radius hyperspheres intersect (figure 2d), the degree of
overlap is correctly reflected, regardless of dimensionality, by
H2S, but not by the other visualizations. Finally, while the em-
bedding geometry in MDS and t-SNE is strongly dependent
on the relative number of samples for each category, H2S is
not biased by having different numbers of samples for each
category (figure 2e).
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Figure 2: Comparison of H2S, PCA, MDS, and t-SNE on
synthetic examples, in 3D and 200D.
The leftmost column shows 3D renderings of uniform 3-ball
distributions generating the points to the right. The sec-
ond through fifth columns from the left show two-dimensional
embeddings of the three-dimensional distributions, and the
four rightmost columns show two-dimensional embeddings of
equivalent 200-dimensional distributions. (a) Two touching
equal-radius hyperspheres. (b) Two concentric hyperspheres
with different radii. (c) One larger hypersphere enclosing a
smaller one, touching at one surface point. (d,e) Two inter-
secting hyperspheres with equal radii and the same number
of points (d), or a different number of points (e).

Human imaging experiment. In an fMRI experiment, 24
human subjects were presented with images from visual
categories such as animate/inanimate, face/body, and ani-
mal/human face (figure 3a), for a total of 48 distinct stimuli
(see Walther (2015) and Walther, Diedrichsen, et al. (2016)
for details). 320-voxel regions of interest were then defined for
six functional visual areas using these and retinotopic map-
ping stimuli (figure 3b). For each pair of stimuli, the crossnobis
distance estimator (Kriegeskorte et al., 2007; Nili et al., 2014;
Walther, Nili, et al., 2016) provided an unbiased estimate of
the representational distance. That distance matrix can then
be visualized using H2S or classical MDS (figure 3c, left and
right respectively, in each column).

Results
The H2S visualizations for V1, V2, and V3 on the left of
figure 3c show all spheres, and therefore all categories, as
highly overlapping. H2S renderings should not be interpreted
as fits to the MDS scatters; rather, they are alternative, and
likely more accurate, visualizations of high-dimensional ge-
ometry with fewer nonlinear distortions than those introduced
by MDS. This overlap indicates that each of those three ar-
eas do not respond, on a population level, in a manner that
clearly separates the stimuli by category. It is apparent, both
from their H2S and MDS visualizations, that there is signifi-
cant spread within each category, indicating that these areas
do respond differently to the different stimuli. This matches
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Figure 3: Category representations in human ventral vi-
sual regions.
(a) Visual stimuli and their categories presented during imag-
ing experiment. (b) Six visual regions in a human brain sepa-
rately analyzed for their responses to the stimuli. Responses
to each stimulus in each area are 320-dimensional: they were
measured in a 320-voxel region of interest. (c) H2S (left) and
MDS (right) representations of faces (red), bodies (green),
objects (blue), and scenes (gray), for the six visual areas in
(b). H2S renderings should not be interpreted as fits to the
MDS scatters; rather, they are alternative, and likely more ac-
curate, visualizations of high-dimensional geometry. V1, V2,
and V3 do not distinguish the different categories well: re-
sponse distributions are highly overlapping. The LOC sep-
arates bodies and faces well while representing objects and
scenes more similarly. FFA increases those separations, with
faces being particularly well isolated. PPA represents scenes
with the most spread—their representation is most different
from faces. (a) and (b) and data in (c) are reproduced from
Walther (2015) and Walther, Diedrichsen, et al. (2016).

our prior expectations for how these early visual areas should
behave: neurons there are known to be selective for local fea-
tures such as static and moving oriented edges, contours, and
textures and are therefore responding to stimulus features that
may or may not be predictive of stimulus category.

The more temporal areas on the right of figure 3c represent



visual object categories quite differently. In the LOC, the face
and body categories suddenly become quite separable from
each other and from objects and scenes, the latter two still
overlapping. This makes sense, given that the LOC is thought
to signal simple object shape, serving as an early stage of ob-
ject processing (Grill-Spector et al., 2001). If indeed the LOC
is sensitive to overall object shape, then one would expect
stimuli with more similar shapes to group together, and have
representations more dissimilar from stimuli with very differ-
ent shapes. This appears to be reflected in the geometry:
faces are furthest from objects and scenes, with bodies form-
ing another distinct group. It is surprising then, that objects
and scenes are not more strongly separated. This may be
due to the choices of images for objects and scenes, but may
also point to high-order contextual processing, beginning in
the LOC, that gives rise to its sensitivity to stimulus category.

The FFA is a module in the ventral stream defined by its
selectivity for faces (Kanwisher et al., 1997); this is supported
by the H2S visualization. It shows a representation in which
faces are both the largest and most isolated category. The
large size reflects the variety of response patterns to differ-
ent faces which in turn makes the FFA good at discriminating
faces. The isolation reflects its ability to discriminate faces
from non-face stimuli. The small size and overlapping nature
of the object and scene categories point to the area’s relative
insensitivity to different samples within those categories. The
isolation and size of the bodies category suggests that FFA is
selective for bodies as well, though to a lesser extent that it is
for faces.

The PPA is an even more temporal visual area that re-
sponds selectively for “places”: images of scenes regardless
of the number of objects within the scene (Epstein & Kan-
wisher, 1998). Again, H2S reflects this selectivity by rendering
the place category as a separate sphere. The larger size ad-
ditionally suggests discriminability of individual scenes. When
it was discovered, the PPA was noted to be “weakly” respon-
sive to objects and not at all to faces (Epstein & Kanwisher,
1998)—this is reflected in the relative sizes of the object and
face category spheres.

Conclusions

We introduced H2S, a novel method for visualizing the
spreads, separations, and overlaps of category-related distri-
butions in high dimensions. Visualizing the representations of
natural image categories in human ventral visual regions re-
vealed overlapping categories in the early visual areas V1-3
and strong category separation in LOC, FFA, and PPA. Faces
and places had the greatest spread in FFA and PPA, respec-
tively (figure 3c), consistent with their hypothesized functions
in the literature. H2S provides a simple and intuitive global
picture of the representational geometry of categories that is
complementary to visualization techniques, such as MDS and
t-SNE, that produce an arrangement of individual exemplars.
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