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Abstract

This work presents a neural network model and theory
of cognitive decision-making. It attempts to explain the
interactions of cortical and subcortical mechanisms and
how these may lead to some of the behavioral proper-
ties of flexible complex decision-making. Specifically,
we model the interactions among several layers of cor-
tex, basal ganglia and the dopamine system. Key to our
theory is that all cognitive decisions result from cortico-
striatal-thalamus loops akin to those heavily studied in
animal motor action selection. Relevant areas of cortex
propose a plan of action using associative mechanisms,
driven by reinforcement learning; then other cortical ar-
eas use that information from sensory input, contextual
information and internal goal states to make a prediction
about outcome. That prediction is used by striatum to
make a go/nogo decision on that plan. Cortical areas
thereby learn in a supervised way from actual observed
outcomes, whereas the basal ganglia learns its go/nogo
decision based on dopaminergic reinforcement signals.
By breaking up complex decisions into sequential, simple
go/nogo decisions, the same canonical decision-making
circuit, as used in basic action selection, can scale up
to flexible complex decisions. Furthermore, we postulate
that model-free and model-based decision-making are
different modes of the same canonical decision-making
circuit.
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Introduction

Decision-making is of critical importance as the quality of peo-
ples decisions are among the most important determinants of
whether our outcomes are good, bad, or disastrous. As such,
a great deal of scientific work has been directed at human
decision-making. We extend this work by providing a sys-
tems level neural network model of basal ganglia (BG), the
dopamine system and parts of cortex involved in developing
plans and predicting outcomes. Our model and theory are

based at the broad level on the close analogy between the
brain regions involved in motor action selection, and those in-
volved in higher cognition. In each case, there are circuits
descending from cortex, through the striatum, the globus pal-
lidus, and the thalamus, back to cortex. In the motor cortex,
these circuits have been studied in great detail, and have been
shown to select among competing representations of potential
actions in the cortex. Previous computational models of work-
ing memory (Frank, Loughry, & O’Reilly, 2001) have proposed
that similar basal ganglia circuits connected to higher areas of
prefrontal cortex select which representations are maintained
by having those neurons enter a state of continuous firing over
short periods. We propose that selecting representations in
higher areas of frontal cortex serves as an intermediate step
in complex decisions, and as the final output for decisions on
plans and strategies. It has long been proposed that such ac-
tively maintained representations serve to guide thought and
action by providing a top-down biasing effect (e.g., (Miller &
Cohen, 2001)). As such, they are suited to serve as plans
and subgoals in complex tasks. Here we model a labora-
tory decision-making task with different payouts depending on
goals of the agent, and show how the different neural mecha-
nisms interact to evaluate and select appropriate decisions.

Decision-making as a serial, iterative process

Our theory postulates that complex decisions are broken up
into an iterative sequence of canonical go/nogo decisions.
This sequentialization allows the decision circuit to easily
scale to nearly arbitrarily complex situations and set of actions
by simply iterating more often through the same loop (see fig.
1). We thereby postulate that this loop consists of generat-
ing a candidate plan of action in cortex. Cortex then further
predicts the outcome of that considered plan of action, after
which it then evaluates that outcome against the current set
of goals to assign the plan of action in a given situation and
goal state a specific value (most likely to be in orbital frontal
cortex). This information then triggers either a go or a nogo
response in basal ganglia. A go decision results in the plan
being gated into working memory and executed. In contrast,
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Figure 1: Complex tasks can be broken up into a sequence
of simpler go/nogo decisions. Each of these decisions break
up into a multi-step pipeline of generating a candidate plan of
action, evaluating its outcome and then accepting or rejecting
the plan. This same loop iterates through all of plans of action
for a given situation, as well as hierarchically loops through
plans of actions as the situation evolves.

a nogo decision results in the loop starting over again with
cortex presenting a new plan of action for which a go/nogo
decision is made.

Model-free / model-based decision-making as
opposing ends of the same decision circuit

Recently, the concept of model-free and model-based
decision-making has been increasingly prominent in the field
of decision-making (Daw, Niv, & Dayan, 2005). It has
been suggested that model-based decision-making is asso-
ciated with cortical learning and model-free with basal gan-
glia learning based on dopamine. However, increasing evi-
dence suggests a more mixed picture (Daw, Gershman, Sey-
mour, Dayan, & Dolan, 2011; Doll, Simon, & Daw, 2012).
Behavioural data indicates that the basal ganglia is also in-
volved in model-based decision-making. Furthermore, func-
tional data from motor action selection and other animal data,
indicates a close tie between cortex and basal ganglia. The
model presented here, instead postulates that model-free and
model-based components are working in tandem in the same
canonical decision circuit. We postulate that cortex proposes
a candidate action plan using a model-free process. Other
areas of cortex then predict the outcome of that plan and
its respective value given current goals, which by definition
is model-based. Finally basal ganglia makes a dopamine
driven reinforcement based go/nogo decision. As learning
progresses, the order in which cortex considers plans of ac-
tion increasingly improves such that the first plan considered
is often the best available plan. At that point basal ganglia
can start selecting the first candidate plan considered be-
fore the model-based evaluation has completed, avoiding the
time required to do the full model-based evaluation of the out-
come. Therefore, despite using the same canonical decision-
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Figure 2: Decision-making task: In each situation, each plan
achieves a specific outcome. If the reward outcome matches
the goal of the agent, the network receives a positive reward

making circuit, behaviour can shift from more model-based
appearance of behaviour to more model-free appearance of
behaviour depending on situation and progression of learning.

The task

We simulate decision-making in the model for a relatively com-
plex task intended to capture important aspects of many do-
mains of human decision-making. Three factors must be con-
sidered to determine whether the outcome will be rewarding.
Those factors are Situation, Plan, and Goal. In each trial, the
model is presented with a Situation and a Goal. It then ar-
rives at a plan to evaluate, and use or reject and move on
to another plan. Each Plan, when selected, deterministically
leads to one Resulting Situation. Each Resulting Situation
then leads to one Outcome. If that Outcome matches the
current Goal, the model is given a reward input; otherwise,
no reward (nor punishment) is given for making that selec-
tion. Thus, the models task is to avoid (not select) each Plan
that will not produce an Outcome matching the current Goal.
In this simulation, we used 10 Situations, 10 Resulting Situa-
tions, 5 Plans, and 4 Goals and Outcomes. Thus, there were
200 total (Situation x Plan x Goal) combinations for the model
to learn. Thus, we used a larger task space than animals or
most humans could easily master purely by memorizing com-
binations.

A neural network model of cognitive
decision-making

We implement and simulate our decision-making theory in a
neural network model simulated in Emergent (O’Reilly, 2007).
Inputs to the model are presented as one-hot encoding layers
for Situations, and Goals, representing one of 10 situations,
and one in 4 goals the network is currently pursuing. These
layers are connected to the Plan Selection layer, which iter-
ates (due to accommodation) in a learned order through the
available plans. The chosen Plan, together with the Situations
layer is connected to the Outcome Prediction layer, which is
trained to predict the Resulting Situation. This prediction then
further feeds into a Value Prediction layer (likely to be OFC in
most cases) together with a Goals input layer to predict the
value of the predicted outcome. Based on the predicted value
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Figure 3: The model consists of 3 main components: Cortex,
Basal ganglia and the dopamine based reward prediction sys-
tem. Cortex generates a plan of action and predicts its likely
outcome as well as its value given the models current goal
state. Basal ganglia discretizes this information into a go/nogo
gating decision. The dopamine system acts as a critic and
provides negative reinforcement to indicate a lost opportunity
if a plan is chose that doesn’t lead to the best outcome.

information, the basal ganglia thalamus loop then chooses to
either execute the plan (by the go pathway gating the plan into
working memory), or to reject the plan and continuing to con-
sider the next plan of action in the given situation. When a
plan is executed, the environment provides a Resulting Situa-
tion, Outcome and the resulting reward signal that the cortical
layers use to train their prediction in a supervised way. Fur-
thermore, the overall model incorporates a modified version
of the dopamine system that has been developed in the lab
over an extended period of time (PVLV) (O’Reilly, Frank, Hazy,
& Watz, 2007). This dopamine signal drives learning in the
two model-free components of the system, the Plan Selection
layer, and the basal ganglia go/nogo decision. In each case
a positive dopamine signal increases the probability of choos-
ing the plan of action, whereas a negative dopamine signal
reduces the probability. Due to the reward prediction error
nature of the dopamine signal, it can provide negative rein-
forcement when a plan is worse than predicted even though
the environment in this task only provides positive reward, or
no reward.

Results

As shown in figure 4 the model overall learns the task rela-
tively rapidly in the sense that it correctly rejects the action
plans that don’t lead to reward in a given situation (92 + 1%)
and accepts the plans that do (95 +2%). The model-based
cortical portion of the model learns to predict the resulting sit-
uation with 88 + 1% accuracy, and the outcome reward with
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Figure 4: Graph showing performance of the decision-making
model on the task. Choicegroups correct depicts the percent-
age of times the model selects the correct action plan for a
given situation and goal. Plans first good depicts the percent-
age of first plans of action within a choice group that were
good plans for the given situation and drive. This part shows
the slower model-free learning of considering the correct plan
of action initially without needing to evaluate the outcome in a
model-based form.

an accuracy of 90 + 1%. Over time, the Plan Selection layer
learns to provide a plan that leads to reward as its first candi-
date plan. Initially it is at chance level =~ 30% but continues to
improve to 65 £2%.

Conclusions

Our results show that the full model learns to perform a com-
plex task relatively well, and, over the course of learning, pro-
gresses from a model-based to a model-free selection pro-
cess. While both cortex and basal ganglia are involved in both
types of decisions, the cortex contributes substantially less if
the model-based cortical prediction components are not per-
formed. These results can explain the findings of relatively
more basal ganglia contributions with model-free processing,
but activation of both cortex and basal ganglia in both types of
processing (Daw et al., 2011; Doll et al., 2012).

This theory does not directly address the functional, de-
scriptive level of many theories based on human behavior.
It is intended to provide more specific hypotheses about the
mechanisms underlying human decision-making than previ-
ous theories have offered. This specificity is possible because
we assume (based on well-studied broad anatomical similari-
ties) that the mechanisms of animal action-selection are also
those used in human decision-making. We propose that these
same basic mechanisms allow humans to make accurate de-
cisions in very complex domains by relying on humans supe-



rior use of abstract representations, and through our ability to
assemble many individual micro-decisions into coherent eval-
uations by use of episodic memory. This theory does not yet
fully address how humans are able to use individual carefully-
learned evaluative steps into complex chains of logic and pre-
diction in even more complex domains; it remains to future
work to determine whether the processes described here are
adequate when chained together in sufficient complexity, or
whether other, novel mechanisms that are categorically differ-
ent than animal action-selection are needed.
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