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Abstract 
Neuroscience has struggled to link animal 
models to human brain functioning. Hunt et al. 
(2017) identified a triple functional dissociation 
in prefrontal cortex (PFC) using single-cell 
recordings from macaque during an information 
gathering task. We attempt to find a similar 
dissociation in the human brain using 
functional magnetic resonance imaging (fMRI) 
during a similar task using two approaches: 
mass univariate analysis and representational 
similarity analysis (RSA). In a mass univariate 
analysis, we find evidence of a belief 
confirmation signal in ACC, consistent with that 
identified in single cell recordings in the same 
task. Using RSA, we successfully produced 
clear representational geometries in primary 
visual cortex and the fusiform gyrus for spatial 
location and cue type (face/house) respectively. 
However, we found no clear relationships 
between RSA matrices in anatomical regions of 
interest for dlPFC, OFC or ACC, in contrast to 
what was found in the macaque data. These 
findings do not completely rule out RSA as a 
means of mapping animal and human data to a 
common space in PFC, as there is still much 
space for further exploration of the data. 
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Introduction 

Animal models have great potential in helping us 
understand brain function. The monkey brain has 
proven particularly useful to model those functions 
unique to primates, such as complex cognitive 
processes like problem-solving and decision-
making. There is much evidence that PFC is 
similarly structured in primate and human brains 
(Price, 2010). Neubert et al. (2015) were able to link 
the majority of a selection of human PFC 
subregions involved in decision-making to 
homologous regions in macaque using resting-
state fMRI and diffusion-weighted MRI. Single-cell 
recordings in macaque brains have been invaluable 
in starting to understand the role of subregions of 
PFC in value-based choice (Padoa-Schioppa and 
Assad, 2006; Kennerley et al., 2009). 

 
In a recent paper by Hunt et al. (2017), a triple 

functional dissociation is established in an 
information gathering task using single-cell 
recordings from prefrontal areas in macaque. 
However, how to generalize such 
electrophysiological recordings from animals to be 
able to draw conclusions about human brains is 
unclear.  

 
Hunt et al. found specific neural signatures in 

three prefrontal subregions in macaque: 
orbitofrontal (OFC), anterior cingulate (ACC), and 
dorsolateral prefrontal cortex (dlPFC; Fig. 1).  



Figure 1: (A-C) Representational similarity matrices of the 20 conditions in an information gathering task. 
The conditions are ten stimuli presented either on the left or right side of the screen. The color of each pixel 
represents the correlation between a population of neurons’ firing rates in that specific brain region in 
response to the two conditions being compared. Reproduced from Hunt et al. (2017). 
 
Activity in OFC was found to be related to the value 
of the stimulus when only one stimulus had been 
attended to. When the values of more than one 
stimulus within a trial became known to the 
participant, OFC activity started reflecting an 
attention-guided value comparison between the 
available options instead. dlPFC activity was shown 
to contain a representation of the current locus of 
spatial attention, as it was mostly modulated by the 
location on the screen of the cue the participant was 
attending to. Activity in ACC encoded 
confirmation or disconfirmation of the belief 
established by the first presented cue when 
subsequent cues were attended. 

 
In this paper, we try to replicate Hunt et al.’s 

findings in human functional magnetic 
resonance imaging (fMRI) data using a similar 
paradigm. To this end we use two approaches: 
mass univariate analysis and representational 
similarity analysis (RSA). 
 

In a mass univariate analysis, we find that 
activity in the anterior rostral cingulate zone 
(RCZ) of the ACC, as defined by Neubert et al. 
(2015), correlates negatively with belief 
confirmation similarly to that found in the 
macaque paper. Our initial RSA did not produce 
similar representations to those seen in Figure 
1. 

 
Methods 

14 healthy human participants (aged 18-50) 
attended two study sessions: one behavioral 
training session (1hr) and one fMRI session 
(2hr 15min). In the behavioral session, 
participants learned the meanings of ten stimuli: 
five faces and five houses.  
 

 
Five of these stimuli represented a reward 
probability (10%, 30%, 50%, 70%, or 90%) and the 
other five a reward magnitude (10, 30, 50, 70, or 90 
points). 
 

In the main task performed in the scanner, 
participants are asked to choose between two pairs 
of cues (Fig. 2). Each pair consists of a probability 
and a magnitude cue. The reward associated with 
that option is the number of points represented by  

      Figure 2: Main Task Paradigm. 



the magnitude cue awarded probabilistically in 
accordance with the probability cue. ‘Optimal’ 
behavior in the task (maximizing long-run expected 
reward) would be to choose the side with the higher 
expected value (reward probability multiplied by 
reward magnitude). However, a trial starts with the 
four cues being hidden, where the pair of cues on 
the left is one option and the pair on the right 
another. Participants are initially shown two 
different cues sequentially. These can either be two 
cues from the same option (‘option trials’, 50% of 
trials) or two cues from different options 
representing the same attribute (probability or 
magnitude; ‘attribute trials’, 50% of trials). After this, 
participants get the opportunity to view the 
remaining two hidden cues at a cost by pressing the 
corresponding buttons. When participants decided 
to stop sampling the additional cues, they made a 
choice between the two options. 

 
Whole-brain fMRI measurements were made 

using a Siemens Prisma 3T scanner with a 2 x 2 x 
2mm voxel size, repetition time (TR) = 1.235s, echo 
time (TE) = 20ms, flip angle = 65° with an axial 
orientation angled to AC-PC using a 64-channel 
head coil. The sequence used was MB3 PAT2. The 
average number of volumes collected per 
participant was 2587. T1-weighted structural 
images were obtained using an MPRAGE 
sequence with 1 x 1 x 1mm voxel size, on a 
174x192x192 grid, TE = 3.97ms, TR = 1.9s.  

 
For RSA we used the human neuroanatomical 

homologues of the regions studied in the macaque 
paper. We first estimated a whole-brain GLM with 
regressors describing cue onset as well cue 
identity. After projecting the results from all runs into 
MNI space, we then extracted the parameter 
estimates for all voxels within each mask for each 
area of interest (containing the areas on both 
hemispheres). This produces a [voxels*conditions] 
matrix of parameter estimates for each mask, which 
can then be used to compute the representational 
similarity between conditions.  
	
For mass-univariate analyses, we used a similar set 
of regressors to those used in Hunt et al. (2017), At 
the time of cue 1 and cue 2 presentation, this 
included several regressors relating to the value of 
currently and previously attended options. Perhaps 
most importantly, however, it also included a 
regressor that is orthogonal to value, reflecting 
whether the second attended cue confirms or 
disconfirms the belief set up at the first cue for which 
option should be chosen (see Hunt et al., 2017, for 
full details).	
	

Results 
We found deactivation of an area inside dorsal ACC 
when the second cue confirms the belief formed by 
the first cue (Fig. 3; area of peak deactivation: max 
Z = 4.5, MNI x = 8, y = 30, z = 32 mm). In Neubert’s 
atlas for cingulate and orbitofrontal cortex, this area 
is classified as part of the anterior rostral cingulate 
zone of ACC (Neubert et al., 2015). Importantly, in 
option trials the second cue is considered 
confirmatory if it is of a similar value to the first cue. 
In contrast, in attribute trials the second cue is 
considered confirmatory if it is of a very different 
value from the first cue. 

 
 
 
 
 
 
 
 
 
 
 

Figure 3: ACC deactivation in response to belief 
confirmation in option trials (thresholded at Z > 3.5 
for display purposes). MNI x = 10mm. 
 

In Figure 4 it can be seen that RSA successfully 
discriminated between basic properties of sensory 
processing – for example, a mask placed over the 
calcacarine sulcus clearly distinguishes  left vs. 
right attended items, and a mask placed over the 
fusiform gyrus clearly distinguishes currently 
attended faces vs. houses. However, when we 
examined similar matrices in predefined anatomical 
ROIs of OFC, DLPFC and ACC, no clear pattern 
could be distinguished that closely matched what 
we had observed in RSA on monkey single cell data 
in these regions. 

 
Discussion 

The ACC deactivation we observe in response to 
cues confirming the belief formed in response to the 
first cue is in line with many recent accounts 
describing ACC in terms of value comparison 
between a current best ‘default’ option, versus 
exploring other alternatives in the environment 
(Daw et al. 2006; Boorman et al., 2013). Whereas 
most studies have considered this belief updating 
across trials we here see a signal consistent with 
belief updating within a trial, as a decision is being 
formed. We observe deactivation in response to 
confirmation of the belief formed from the first cue 
presentation in all trial types. This suggests ACC 
cannot simply be encoding value comparison here, 



as in the option trials the observed cues belong to 
the same option and so there is nothing yet to 
compare against. As such, the decision may not 
really be framed in terms of direct comparison 
between the two alternatives, but instead in terms 
of whether to take or leave the current ‘default’ 
option.  
 

So far we have not obtained clarity in the RSA 
similar to that in the macaque study for our three 
PFC regions of interest: OFC, dlPFC and dACC. 
The OFC RSA was weakly significantly correlated 
with attended value, even though visually this 
relationship could not be distinguished in the matrix. 
We did not find any meaningful correlations 
between the dlPFC and ACC RSA matrices and any 
of the templates used. There are several possible 
reasons for this. One possibility is that the regions 
studied in the macaque brain are not anatomically 
homologous to the regions of interest in the human 
brain; we next intend to use searchlight RSA to 
explore direct mapping between regions that are 
homologous to those identified in the macaque 
study. An alternative explanation to practical 
concerns is that the scale of information encoding 
in PFC can inherently not be probed by RSA. For 
example, it remains debated whether RSA really 
probes fine-grained spatial information that is closer 
to that identified by single neuron data, or whether 
it is primarily driven by more macroscopic signals 
that can be isolated in mass univariate analyses. It 
may be that the intermixed positive and negative 
coding that supported the successful RSA in Hunt 
et al. (2017) is not observable at the voxel level in 
human fMRI. 
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Figure 4: Representational	similarity	analysis	in	(A)	intracalcarine	sulcus,	(B)	temporal	occipital	fusiform	gyrus,	(C)	
OFC,	(D)	dlPFC,	and	(E)	ACC	between	the	10	possible	stimulus	identities	and	which	side	they	were	presented	on.	The	
color	of	each	pixel	in	the	matrix	refers	to	the	correlation	r	between	activity	in	the	two	conditions	across	all	voxels	in	
the	mask.
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