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Abstract
Complex behaviors are often driven by an internal model,
which may reflect memories, beliefs, motivation, or arousal.
Inferring the internal model is a crucial ingredient for under-
standing how the brain generates behaviors and interpret-
ing neural activities of agents. Here we describe a method
to infer an agent’s internal model and dynamic beliefs, and
apply it to a simulated agent performing a foraging task. As-
suming rationality of animals, we model the behaviors of the
animals as a Partially Observable Markov Decision Process
(POMDP). Given the agent’s sensory observations and ac-
tions, we learn its internal model by maximum likelihood es-
timation over a set of task-relevant parameters. The Markov
property of the POMDP enables us to characterize the transi-
tion probabilities between internal states and iteratively es-
timate the agent’s policy using a constrained Expectation-
Maximization algorithm. We validate our method on sim-
ulated agents performing suboptimally on a foraging task,
and successfully recover the agent’s actual model.
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Introduction
The brain evolved complex mechanisms to enable flexible behav-
iors in an uncertain and partially observable environment, yet its
computational strategies remain unclear. To better understand
behaviors and interpret the associated neural activities, it would
be beneficial to estimate the internal model that explains behav-
ioral strategies of animals. In this paper, we use Partially Ob-
served Markov Decision Processes (POMDP) to model animal
behavior as that of rational agents acting under possibly incorrect
assumptions about the world. We then solve an inverse POMDP
problem to infer these internal assumptions.

Since the world state is not fully observed, the agent needs
to create an internal representation of the state in the world.
There is a one-to-one correspondence between a POMDP and
a Marokv Decision Process (MDP) operating on the space of be-
liefs (a Belief MDP). By using this equivalence, we are able to
define belief states and their dynamics, and further to compute
the rational policy by which an artificial agent chooses actions,
given its reward function and action costs.

Inverse reinforcement learning (IRL) tackles the problem of
learning the motivation of an agent based on the behaviors
(Russell, 1998), which is a set of reward functions that deter-
mine the instantaneous reward obtained through different ac-

tions in different states assuming known dynamics. Under suit-
ably strong model constraints, we show that the agent’s reward
functions and assumed dynamics can be identified. The Inverse
POMDP can be cast as a maximum-likelihood problem where
the reward functions and latent dynamics parameters can be
learned with gradient descent methods (Babes, Marivate, Sub-
ramanian, & Littman, 2011). We use Expectation-Maximization
(EM) algorithm (Dempster, Laird, & Rubin, 1977), specially the
Baum-Welch algorithm, to estimate the parameters of the inter-
nal model, and infer the posterior over the latent states.

Behavioral Modeling
Modeling Behavior as POMDP
In a POMDP in discrete time, the state of the world, s, follows dy-
namics described by transition probability T (s′,s,a) = P(s′|s,a),
where s′ is the new state, s is the current state, and a is the ac-
tion selected by an agent. However, the agent does not have
direct access to the world state s, but must infer it from sensory
observations o according to the probability distribution P(o|s,a).
Upon taking action a, the agent receives an immediate reward
r = R(s′,s,a). The goal of an agent solving a POMDP is to
choose actions that maximize the long-term expected reward
E[∑∞

t=0 γtrt ] based on a temporal discount factor 0 < γ < 1. The
policy π(a|s) describes the probability of choosing an action a
from a certain state s. We use the “state-action value”, Qπ(s,a),
to quantify how much total future reward can be obtained by tak-
ing action a from state s and then following a particular policy π

from subsequent states. This value function under optimal pol-
icy π∗ can be expressed in a recursive form using the Bellman
equation (Bellman, 1957):

Qπ∗(s,a) = ∑
s′

P(s′|s,a)
[
R(s′,s,a)+ γmax

a′
Q(a′,s′)

]
(1)

where γ is the temporal discount factor, and R(s′,s,a) is the in-
stantaneous net reward for taking action a from state s and reach-
ing state s′.

Belief MDP
In a partially observable environment, an agent can only act on
the basis of past actions and observations. The concept of belief,
which is a posterior distribution over world states s given sensory
information, concisely summarizes the information that can be
used by agents during decision making. Mathematically, we write
the belief b as a vector with length equal to the number of states.



The i-th element of the belief vector bi is the probability that the
current state at time t is s = i given the sensory information until
now,

bi
t = P(st = i|o1:t), (2)

where the sub-index 1 : t denotes the time span of the data sam-
ple.

The fully observable belief state representation allows a
POMDP problem to be mapped onto an MDP problem with the
state-action value function on belief states, Qπ(b,a). The policy
π in this case is a mapping from the belief state to actions.

To make belief MDP problems more tractable, we can dis-
cretize the belief space, which will allow us to solve the problem
with standard MDP algorithms (Bellman, 1957; Howard, 1964).

Internal Model Inference
The dynamics of the belief states and the policy are determined
by a set of parameters θ. In our setting, the agent assumes they
know the true parameters and acts accordingly, but we allow that
they may be incorrect.

Inferring the agent’s parameters θ can be viewed as a
maximum likelihood estimation problem. The EM algorithm
(Dempster et al., 1977) enables us to solve for the parame-
ters that give best explanation of the observed data, while in-
ferring unobserved states in the model. Denote by l(θ) the like-
lihood of the observed data, where θ are the parameters of the
model which include both assumptions about the world dynamics
and the parameters determining the sizes of rewards and action
costs. Let b be the vector of beliefs, which is the latent variable
in our belief MDP model, and let a and o be the vector of actions
and sensory information over time. According to the EM algo-
rithm, we alternately update the parameters θ that improve the
expected complete-data log-likelihood and the posterior over la-
tent states based on the estimated parameter. In the E-step, we
need to determine the posterior distribution of the latent variable
given the observed data, P

θ
old(b|a1:T ,o1:T ), based on the esti-

mated parameters θ
old from the previous iteration. In the M-step,

we update the parameters by maximizing an auxiliary function
that describes the expected complete data likelihood,

Q (θ,θold) = 〈logPθ(b1:T ,a1:T ,o1:T )〉P
θold (b1:T |a1:T ,o1:T ). (3)

Since the policy and transition probability depend implicitly on
the parameters θ, we are unable to get a closed form of optimal
solution for θ. Instead of solving for the optimal θ, we need to
take the gradient of these terms with respect to the parameters
θ, and use gradient descent to update the parameter θ in the
M-step.

Here we approximate the optimal policy using a softmax or
Boltzmann policy with a small learnable temperature τ. The soft-
max introduces an additional sub-optimality of the agent: instead
of choosing the action that brings the maximal expected reward,
the agent has some chance of choosing a reward that yields a
lesser reward, depending on the state-action value Q. Under the
softmax policy, the actions under state s follow the distribution

πsfm(a|s) = Pθ(a|s)∼
e−Qπsfm (s,a)/τ

∑
a′

e−Qπsfm (s,a′)/τ
. (4)

Similarly to the Bellman equation (1) based on the optimal pol-
icy, the Q-value function under a softmax policy can also be ex-
pressed in a recursive way, replacing the max with an average:

Qπsfm(s,a) = ∑
s′

P(s′|s,a)
[
R(s′,s,a)+ γ∑

a′
πsfm(a′|s′)Qπsfm(s

′,a′)
]

(5)

Differentiating with respect to θ on both sides, and reorganiz-
ing the terms, we can see that the derivative of the Q-value func-
tion with respect to the parameters can be solved analytically as
a linear function of the known quantities. Using the chain rule, the
gradient of the policy can be obtained in this way. We then use
this gradient in the EM algorithm to estimate the internal model
parameters that best explain the observed data.

Application to Foraging
We applied our method to the specific setting of a task in which
an animal can forage at either of two locations (‘feeding boxes’)
which may have hidden food rewards that appear with a certain
rate.

To define the Belief MDP for this ‘two-box’ task, we need to de-
fine the states, actions and rewards. The states must represent
the agent’s location, whether it has obtained food from the boxes,
and a belief representation for the unobserved food availability in
each box.

We assume there are three possible locations for the agent:
the positions of boxes 1 and 2, and a middle location 0. The ac-
tions are defined with an associated cost in a mutually exclusive
way as: doing nothing, going to location 0/1/2, and pressing a
button on the closest box to retrieve food (if available). We also
include a small ‘grooming’ reward for staying at the middle loca-
tion 0 to encourage the agent to stop and think.

In addition to the cost of actions, there are several parameters
that are related to the experiment setting. The food availabil-
ity in each box follows a telegraph process: the food becomes
available following a Poisson process with rate γ, and then be-
comes unavailable following another Poisson process with a dif-
ferent transition rate ε.

Let Ai,t ∈ {0,1} be the food availability for box i ∈ {1,2} at
time t. By omitting the box index i, we consider the food dynamic
in a specific box when no action is taken as follows:

PPPPPPPPAt+1

At 0 1

0 1-γ ε

1 γ 1- ε

With belief defined as b1
t = P(At = 1|o1:t ,a1:t) and b0

t =
P(At = 0|o1:t ,a1:t), we can see that the belief has dynamics:

b1
t+1 = γ+(1− ε− γ)b1

t (6)

When a button-press action is taken to open a box, any avail-
able reward there is acquired. Afterwards, the animal knows
there is no more food available now in the box (since it was ei-
ther unavailable or consumed) and the belief is reset to zero. For
computational tractability, we discretize the continuous beliefs in
each box into N states. With the transition matrices and reward
functions for different states and actions, the animal has an op-
timal policy that is based on the value of different actions. To
allow for variability of actions, we assume that the animal uses a
softmax policy (4).
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Experiments
We now apply our learning method for solving an inverse POMDP
for the foraging task. The goal is to estimate a simulated agent’s
internal model and belief dynamics from its sensory observations
and chosen actions.

For simplicity we assume that at each discrete time step, the
reward availability at both boxes follows a telegraph process with
the same appearance probability of γ1 = γ2 = 0.1 and disappear-
ance probability of ε1 = ε2 = 0.01. Although here the two boxes
have identical dynamics, our model estimation algorithm will also
work in cases where the two boxes have different dynamics.

Without loss of generality, we measure gains and losses rel-
ative to the food reward at one box, thus defining the reward as
r = 1. In that currency, the cost (negative reward) of pressing
the button is 0.3, and that of traveling is 0.2 (switching between
boxes requires two steps for a total cost of 0.4). We also allow
a small reward for waiting of r = 0.05 at the center location (e.g.
while grooming).

We assume the action of an agent taking optimal strategy is
determined rationally according to the value function (1). In Fig-
ure 1, we show some properties of the value function under the
optimal solution of this task given the agent’s incorrect assump-
tions. Qualitatively, we see that the policy of the agent is to go
to the box that has higher expected value, consistent with our
intuition.
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Figure 1: Visualization of value functions. Values of different ac-
tions and states under the optimal solution of the two-box task,
when the agent starts between the two boxes and has specific
beliefs (subjective probability) about whether reward is available
at each box. Left: The value difference (colors) between the ac-
tions ‘stay’ and ‘go’. When the belief in food availability at either
box 1 or 2 is high, the value of ‘go’ is higher than that of ‘stay’,
and the animal chooses to go. Right: The optimal agent places
a higher value on the box where the belief in available food is
highest.

To allow for variability in action selection, we create an agent
that uses a softmax policy (4) with temperature τ = 0.2. This
small temperature enables the agent to follow an approximately
optimal policy based on state-action value Q(s,a).

We track the agent’s actions and sensory observations over
T = 5000 time points. In Figure 2, we show an example of the
task data.

The actions and sensory evidence (locations and rewards)
obtained by the agent all constitute observations for the exper-
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Figure 2: An example of task data. The reward availability in each
of two boxes evolves according to a telegraph process, switching
between available (cyan) and unavailable (red), and the animal
may travel between the locations of the two boxes. When the box
is opened, if there is food in it, the reward is obtained; otherwise,
there is no reward.

Table 1: Comparison of true and estimated parameters
θ γ1 γ2 ε1 ε2

True 0.1 0.1 0.01 0.01
Estimated 0.1225 0.1256 0.0077 0.0124

Reward Groom Travel Button Press
True 0.05 -0.2 -0.3

Estimated 0.0360 -0.2080 -0.4424

imenter’s learning of the agent’s internal model. Based on these
observations over time, we use the EM algorithm to infer the pa-
rameters of the internal model that can best explain the behav-
ioral data.

In Figure 3, we show the results for inference based on a typ-
ical data set. The comparison between the true parameters and
the estimated parameters are shown in Table 1.

Due to the limited amount of data, there is a small discrepancy
between the true parameters and the estimated parameters. This
discrepancy can be reduced with additional data. With the esti-
mated parameters, we can then infer dynamics of the posterior
over the latent states, which are the beliefs on the two boxes.
Note that this is an experimenter’s posterior over the agent’s sub-
jective posterior. The inferred posteriors have similar dynamics
as the true latent belief states (Figure 3B). Consistent with the
true probability of the food availability in each box according to
the underlying telegraph process, the inferred posteriors exhibit
exponentially shaped time series.

Based on the estimated parameters, we create another sim-
ulated agent using the inferred internal model to compare the
true and inferred model. Figure 4 shows that under softmax
near-optimal policies, the two agents choose actions with simi-
lar frequencies, occupy the three locations for the same fraction
of time, and wait similar intervals between pushing buttons or
traveling. This demonstrates that our estimated agent’s internal
model generates behaviors that are consistent with behaviors of
the agent from which it learned.

Conclusions
We presented a method to infer the internal model of a rational
agent who collects rewards in a task by following a Partially Ob-
servable Markov Decision Process. Given that an agent chooses
actions in this way, the estimation of its internal model param-
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Figure 3: Inference of parameters of the internal model and the posterior over the latent belief states. A: The estimated parameters
converge to the optimal point of the log-likelihood contour. Since the parameter space has high dimensions, we project them onto
the first two principal components of the trajectory. B: Inferred posterior of the latent states. The greyscale indicates the probability
over the possible beliefs, and the red dots are the true belief states of the agent over time. The posteriors are consistent with the the
dynamics of the true beliefs.
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Figure 4: Comparing statistics of behaviors for the actual agent
and the inferred agent. A: The distribution of actions. B: The
distribution of time staying at each location. C: The distribution
of time intervals between two button pressing actions. D: The
distribution of time intervals between traveling actions.

eters can be formulated as a maximum likelihood problem, and
the parameters can be inferred using the EM algorithm. When
we applied our method to a foraging task, numerical experiments
showed that the parameters that best explain the behavior of the
agent nicely matched the internal parameters of that agent. The
estimated internal model and the true internal model produced
similar value functions and behavioral statistics.

The success of our method on simulated agents suggests
our method could be fruitfully applied to experimental data from
real animals performing such foraging tasks (Sugrue, Corrado, &
Newsome, 2004). Accurate estimation of dynamic belief states
would provide useful targets for interpreting dynamic neural ac-
tivity patterns, which could help identity the neural substrates of
task-relevant thoughts.
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