Ghost Units Yield Biologically Plausible Backprop in Deep Neural Networks
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Abstract

In the past few years, deep learning has transformed ar-
tificial intelligence research and led to impressive per-
formances in various difficult tasks. However, it is still
unclear how the brain can perform credit assignment as
efficiently as backpropagation does in deep neural net-
works. In this paper, we introduce a model that relies
on a new type of neurons, Ghost Units, that enable the
network to backpropagate errors and do efficient credit
assignment in deep structures. While requiring very few
biological assumptions, it is able to achieve great perfor-
mances on classification tasks. Error backpropagation
occurs through the network dynamics itself and thanks
to biologically plausible local learning rules. In partic-
ular, it does not require separate feedforward and feed-
back circuits. Therefore, this model is a step towards un-
derstanding how learning and memory are computed in
cortical multilayer structures, but also raises interesting
questions about neuromorphic hardware applications.

Keywords: bio backprop; credit assignment; feedback align-
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Introduction

Recently, deep learning has revolutionized artificial intelligence.
Thanks to backpropagation (Almeida, 1987; Pineda, 1987),
deep neural networks take advantage of the multilayer structure
of the network to learn high level features relevant for the tasks
it is trained to perform.

However, how the brain is able to perform credit assignment
in deep structures is still an open question. The core algorithm
used to train deep neural networks (i.e backpropagation) is
seen by the neuroscience community as being biologically
implausible because the implementation used in deep learning
relies on assumptions that cannot be met in the brain (Bengio,
Lee, Bornschein, Mesnard, & Lin, 2015; Neftci, Augustine,
Paul, & Detorakis, 2017).

*Both authors contributed equally to this paper. Alphabetical order.

In this paper, we are considering a recurrent network com-
posed of pyramidal units (PU) that can be identified with the
units that are used in a multilayer Perceptron. These cells
integrate feedforward activity coming from the lower layers and
feedback activity coming from the upper layers. However, in
order to backpropagate the error, we introduce a new type of
interneurons, referred to as ghost units (GU). Their goal is to
predict and cancel feedback from pyramidal units in the upper
layer by integrating the same feedforward input but without
receiving any feedback from the upper layers. This property
enables the network to converge quickly during the feedfor-
ward path, in spite of the presence of recurrent connections,
by canceling feedback coming from the upper layers thanks
to the ghost units. This cancellation effect of the ghost units
allows top-down corrective feedback to be correctly backpropa-
gated when targets are provided in the nudging phase. This
gives the network the capacity to perform credit assignment in
the multilayer structure by simply following its dynamics and
updating the weights according to local contrastive Hebbian
plasticity learning rules. Links can be drawn with (Sacramento,
Costa, Bengio, & Senn, 2018; Jaderberg et al., 2016) where
local credit assignment is also performed, with (Sacramento
et al., 2018) having introduced the idea of canceling the down-
stream feedback with the inhibitory lateral feedback in order
to leave out only the backpropagated error as remaining from
the feedback signal. Here however, we show that it is possible
to approximate the backpropagated gradient without leading
to an exponential decay of its magnitude as it is propagated
through more layers.

Backpropagation thanks to Ghost Units
Architecture

We consider here a biologically plausible implementation for
backpropagation of a directed acyclic graph of feedforward
connections with network input x, target output y and a scalar
L($,y) which somehow compares the network output § with
the target output y.



Each node of this graph is associated with one or more
pyramidal units (PU) whose activity is denoted by s; (the state
of unit i), which will be referred to as unit i. Pyramidal units have
an output non-linearity p which maps their activity s; to their
firing rate p(s;). Both feedforward and feedback connections
are considered in this model. The main feedforward synaptic
weights Wl.]j(. correspond to the influence of presynaptic unit j
on the downstream post-synaptic unit i. The feedback weights
Wi‘; encapsulate the effect of downstream unit i on upstream
unit j. Note that a single feedforward unit (called pyramidal
unit) could in reality be implemented by multiple pyramidal units
with similar input and output connectivity, allowing the network
to reduce the spiking noise.

We also consider a lateral network of ghost units (GU), which
can be identified as inhibitory interneurons. These neurons
are represented by a scalar variable g; for each unit /. A ghost
neuron in a layer is connected to the pyramidal units of the
previous layer only, through two matrices Vl"; (for connections
from the pyramidal unit j to ghost unit [ of the previous) and
V}} (for the feedback connections of the ghost unit / to the pyra-
midal unit j). These neurons aim to reproduce the feedback
activity of the pyramidal units during the forward phase, which
enable the network to compute directly the gradient during the
nudging phase. These neurons are considered as inhibitory
when projecting to the previous layer (which means that their
contribution to the activity of the pyramidal units is —V’p(g)).

Training is decomposed in a prediction phase and a nudg-
ing phase, following (Scellier & Bengio, 2016). During the
prediction phase, the network evolves thanks to its recurrent
dynamics with only inputs provided. During the nudging phase,
both inputs and targets are presented to the network. A top-
down error signal —%ﬁ;)’) pushes the output units s; towards
a value corresponding to a smaller loss L. We show that
the combination of lateral recurrent and feedback connections
propagates this error into the network in a way that closely
approximates backpropagation, so long as some assumptions
are satisfied, regarding the ability of feedback connections to
mimic feedforward connections (approximate symmetry) and of
lateral connections to learn to cancel the feedback connections
when there is no nudging.

Notations
X network input y target output
PU pyramidal unit GU ghost unit
S activity of PU i g activity of GU [
hi predicted output L(3,y) loss function
p  non-linearity function T time constant
Wif feedforward connection from PU j to PU i
W feedback connection from PU j to PU i
V/; lateral (recurrent) connection from PU j to GU [

V  lateral (recurrent) connection from GU [ back to PU i

TIn this article, we do not enforce that outgoing synaptic weights
from inhibitory interneurons are actually negative.

Dynamics of the units

We distinguish three types of inputs arriving into each pyramidal

unit i:

e bi=Y; Wi’;p(sj) is the bottom-up input on the feedforward
path from the pyramidal units

o 1i=Y; Vi’i?p(sj) is the top-down feedback onto unit s; from
its successors.

e ci=Y, pr(gl) is the top-down feedback onto unit s; from
the ghost units of its successors.
We denote ¢; = t; — c; being the error signal, which we pro-

pose will indicate in which direction s; should move to reduce

L. The pyramidal units are evolving through :

i =—Si+bi+ti—ci=—si+bi+e (1)
The ghost units follow :
@ =g+ Y. V/p(s)) )
J

which makes g; converge to ¥ ; Vlj;-p(sj-).

Different architectures and learning procedures

Network with 1-1 correspondence between the
pyramidal units and the ghost units (MA)

Model description In this section, we consider that each
pyramidal unit has a corresponding ghost unitt. In order to
make the reading easier in this part, we will use the same in-
dices for the ghosts units and the pyramidal ones. For example,
ghost units g; will be associated to the pyramidal unit s;.

This architecture can be seen in Fig. 1.
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(a) Connectivity be- T

tween pyramidal units
(in grey, s;) and ghost
units (in red, g;).

t Input

(b) Architecture of the proposed net-
work

Figure 1: Architecture for model A (MA) network with one-
to-one correspondence between each ghost unit and each
pyramidal unit.

The local learning rules for the different synaptic weights are
defined as follow :
e s; acts like a target for the ghost unit g; to learn V/;-:

AV} o< (s: — g1)p(s)) (3)

This minimizes ||s — g||?, i.e., the inhibitory ghost unit learns
to imitate its associated pyramidal unit
There are several times more pyramidal units than inhibitory units,

but a single inhibitory neuron could be associated with multiple pyra-
midal units forming a pyramidal unit



e The top-down feedback #; onto unit i acts as a target for the
weights forming the canceling feedback c;:

AV o< (ti—c;)p(g)). 4)
This minimizes ||t —¢||2.
e The main weights (feedforward, from pyramidal unit j to
pyramidal unit i) are updated using a Hebbian learning rule :
AW o< eip (s:)p(s))- (5)
We show that this approximates gradient descent on L.
e The feedback weights are set equal to the transpose of the
feedforward ones: W}; = Wf
A good approximation of backpropagation We define two

loss functions C; and C;, derived from eq. (3) and eq. (4),
which are:

Ci=|ls—glland G2 = ||t —¢l]

Eq. 5 can be justified as follows.

Theorem 1. If Wb ~ Wl % C1 = 0, C2 — 0 in the prediction
phase and e; is smal/ in the sense that p'(s; + e;) =~ p'(s;),
and if for output un/ts we set 1, such that during the nudg-

ing phase ey T —5 o(s ( L then the nudged network converges

toe; & — ] aL for hidden units s;. This shows that the feed-
back We/ghts thanks to the ghost units, backpropagate error
gradients.

Deep neural network with Ghost Units replicating
online the feedback from the pyramidal units (MB)

We have also developed a less constrained version of the
model MA, that we quickly introduce in this section. In this
model (MB), we do not make any hypothesis on the number
of pyramidal units and ghost units. We also consider that the
feedforward connections Vl{ from the pyramidal unit i to the
ghost unit [ are fixed to a randomly initialized value, therefore
AVIC = (0. The ghost units only aim to match, example by
example, the feedback ¢; coming from the ghost units to
the feedback b; coming from the pyramidal units. Thanks
to this property, c; = b; for a given example at the end of
the prediction phase after learning of Vb”. This enables the

network to correctly learn Wij; in the nudging phase.

As just described, the top-down feedback #; onto unit i acts
as a target for the weights Vl.’l’ forming the canceling feedback c;.
Therefore, the weights are updated as follow in the prediction

phase:
AVy} o< (1 — ci)p(81) (6)

which minimizes ||t — c||2. The main weights le; evolve in the
nudging phase through the same Hebbian rule as in (MA):

AW}, o< eip' (s1)p(s;). (7)

It can be also proved that under some assumptions this
strategy is equivalent to backpropagation.

initialization
while not done do
Sample batch from the training set

for k in range prediction_steps do
for output units ¢; =0

for hidden units ¢; = 2: "p(sj) —Vip(g))

Y units i,

Si 8+ % [—S,' —l—ZWlfp(Sj) + ei]

J
g gi+ g+ Y V/ip(s))]
J

Vi Vi de(si— g1)p(s))]
Vb “ Vb +nv drfeip(g;)]

end

or k in range nudging_steps do
for output units ¢; = —Baa—c

Z ]p SJ

=

for hidden units e; = il}P(gj)

Y units i,

Si 4 Si+ %[—si—l—ZWfp(s/) +ei
J

&e&+%k&+2%ﬁ@ﬂ

Wi ve+nwdt[ep(s,)p( 7)]
b f

Wi W

end

end
Algorithm 1: Learning procedure for model A (MA) network.

Transpose feedback versus Feedback alignment

The feedback weights W}} are initially supposed to be equal

to the transpose of the feedforward ones: WA” WJ{, as in
classical backpropagation. We refer to this hypothe3|s as
transpose-feedback (TF). In practice this hypothesis could be
implemented using an addition reconstruction cost (between
consecutive pyramidal layers), which has been shown to en-
courage symmetry of the weights (Vincent, Larochelle, Lajoie,
Bengio, & Manzagol, 2010). This assumption can also be re-
laxed thanks to (Lillicrap, Cownden, Tweed, & Akerman, 2016)
and the feedback alignment effect (FA). In this case, feedback
weights W,-Ij’- are supposed to be fixed and randomly initialized.
During learning, the feedforward matrix tends to align with the
transpose of the feedback matrix. Both hypothesis (TF and FA)
were studied here.

Results
Credit assignment with replicating units

We consider here a 500-unit network with 1 hidden layer with
MSE loss. No preconditioning of the inputs is used. Batch size
is equal to 100 and the activation is sigmoid. Figure 2 shows
the learning dynamics for a network during training, following
MA assumptions (mean for 5 experiments).
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Figure 2: Learning in a 500-unit MA neural network

In MA, learning is composed of two phases. During the
prediction phase only inputs are provided to the network. The
weights V/ push the ghost unit to mimic its corresponding
pyramidal units while having v learning to minimize the mis-
match between the feedback coming from the ghost unit and
its corresponding pyramidal unit. This pushes the matrix V/
to reproduce W/ and V* to copy W”. This can be seen at the
bottom of Figure 2, where the Frobenius norms between these
matrices during training are reproduced.

This leads to the correct computation of the feedforward
path because the feedback terms cancel each other, despite
happening in a dynamical and imperfect way.

During the nudging phase, the output units are nudged to-
wards the correct values. This shift is backpropagated through
the dynamics of the network and gives rise to an error term in
each hidden layer thanks to the mismatch between the feed-
back coming from a pyramidal unit and its corresponding ghost
unit. W/ evolves in order to minimize this mismatch.

As can be seen at the top (Accuracy) Figure 2, the network
learns to classify correctly MNIST digits. It generalizes well
without any regularization or tricks.

Classification on MNIST
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Figure 3: Test and train error on MNIST for MA

We tested several types of networks on the MNIST dataset:
model MA (see Figure 3) or MB

Transpose-feedback (TF) or Feedback alignment (FA)
different number of units per hidden layer

different numbers of hidden layers (data not shown)

We ran 5 experiments for each model, and represent these
results in Table 1. These results approach state-of-the-art ac-

curacies for multilayer Perceptron, with MA performing slightly
better than MB.

Architecture TF FA
Model #units | Train Test Train Test

MA 100 99.97 97.69 | 99.88 97.50
MA 300 100 98.22 | 99.99 97.98
MA 500 100 98.29 100 98.10
MB 100 99.31 97.22 | 98.93 97.39
MB 300 99.7 98.05 | 99.48 97.98
MB 500 99.76 98.13 | 99.56 98.01

Table 1: Accuracy results on MNIST with MA and MB in a
network with one hidden layer.

Conclusion

The model presented here develops a hypothesis for explaining
how the brain is able to do credit assignment in deep neural
architectures. By introducing inhibitory neurons called Ghost
Units, the network is able to locally compute errors in each
hidden layer and use this error learn useful representations.
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