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Abstract
Flexibility is a hallmark of human and animal behavior,
but the context-dependent neural computations that gen-
erate flexible behavior are poorly understood. Here, we
use a biophysically-based cortical network model to ex-
plore the hypothesis that vasoactive intestinal polypep-
tide (VIP) expressing inhibitory interneurons control lo-
cal circuit dynamics by targeting other classes of in-
hibitory interneuron, supporting context-dependent com-
putations. Depending on the strength of this disinhibi-
tion (simulating VIP activity), network dynamics support
multiple-item working memory (WM, strong disinhibition)
or decision making (DM, weak disinhibition). Within these
regimes, disinhibition controls WM capacity and speed-
accuracy-trade-off in choice behavior. Our findings sug-
gest that long-range trans-cortical VIP-mediated disinhi-
bition is a canonical neural mechanism for the top-down
control of flexible behavior.
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Introduction
Recent data (Pi et al., 2013; Coxon, Peat, & Byblow, 2014)
provide evidence for a highly conserved cortical micro-circuit
motif specializing in disinhibition. Within this motif, VIP in-
terneurons target other inhibitory interneurons (parvalbumin
and somatostatin expressing cells) that in turn synapse onto
pyramidal cells. The functional role and significance of this
form of disinhibition is unknown. but it has been hypothe-
sized that disinhibitory control gates information transmission
(Wang & Yang, 2018) and tunes cortical processing capabili-
ties (Coxon et al., 2014); and that disregulation of disinhibition
might underlie abnormal attention (Pezze, McGarrity, Mason,
Fone, & Bast, 2014) and sensory processing (Nunes & Kuner,
2015). Because VIP interneurons are directly targeted by dis-
tal brain areas, as well as by neuromodulators, they are strong
candidates for implementing flexible control over local circuit
behavior.

It is widely believed that several association cortical areas
(e.g. dorsolateral prefrontal cortex and the lateral intraparietal
area) play an important role in DM and WM, but these two cog-
nitive processes make conflicting demands of neural circuitry.
Competition between neural populations encoding choice al-
ternatives is crucial to DM (Wong, Huk, Shadlen, & Wang,
2007; Standage & Paré, 2011), but competition between pop-
ulations encoding memoranda entails forgetting. Thus, a
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Figure 1: (A) Local-circuit model. Periodical pyramidal neu-
rons (solid green) and inhibitory interneurons (red). Arrows
depict connectivity (Gaussian) and RF (Gaussian with arrow).
GABAR (red arrows), AMPAR-only (open green arrows), and
synapses with AMPARs and NMDARs (wide green arrows).
Inhibition from small and large basket cells (SBC and LBC).
(B) Membrane potential of a pyramidal neuron and an in-
terneuron at rest. (C) Synaptic currents (red: GABAR; thin
green: AMPAR; thick green: NMDAR) onto a pyramidal neu-
ron (solid) and an interneuron (dotted).

mechanism is required to support both processing regimes.
To the best of our knowledge, no such mechanism has been
proposed. Here, we hypothesize that VIP disinhibitory con-
trol induces rapid transitions between network regimes. To
instantiate this hypothesis, we simulated disinhibitory control
in a network model.

Methods

Our local-circuit model is a network of pyramidal neurons
and inhibitory interneurons, connected by AMPA, NMDA and
GABA receptor conductance synapses (Fig. 1). We simulated
two tasks: a luminance-contrast discrimination task and a WM
task. On the former (decision) task, the network distinguished
a higher-rate stimulus (the target) from a lower-rate stimulus
or stimuli (the distractors). On the memory task, the network



accurately retained as many stimuli as possible over a delay
interval. Cognitive control by disinhibition was simulated by
scaling a non-selective inhibitory conductance onto interneu-
rons, mimicking the effect of VIP interneurons on both tasks.

The local circuit model is a fully connected network of leaky
integrate-and-fire neurons (Np = 800 pyramidal, Ni = Np/4
fast-spiking inhibitory interneurons). Each model neuron is
described by

C{p,i}
m

dV
dt

=−g{p,i}
L (V −E{p,i}

L )− I , (1)

where Cm is the membrane capacitance, gL is the leakage
conductance, V is the membrane potential, EL is the equilib-
rium potential, and I is the total input current. When V reaches
a threshold ϑv, it is reset to Vres, after which it is unresponsive
to its input for an absolute refractory period of τre f . Here and
below, superscripts p and i refer to pyramidal neurons and
interneurons respectively. The input current at each neuron is

I = Isel+ I rec+ Iback, (2)

where Isel is stimulus-selective synaptic current (0 for in-
terneurons), I rec is recurrent (intrinsic) synaptic current and
Iback is background current. Isel and I rec are synaptic cur-
rents, and Iback is injected current. Synaptic currents driven
by pyramidal neuron spiking are mediated by simulated AMPA
receptor (AMPAR) and/or NMDA receptor (NMDAR) conduc-
tances, and synaptic currents driven by interneuron spiking
are mediated by simulated GABA receptor (GABAR) conduc-
tances. Synaptic activation (proportion open channels) is

dga
AMPA,GABA

dt
=−

ga
AMPA,GABA

τ{p,i}
AMPA,GABA

+δ(t − t f ) (3)

where τAMPA and τGABAare the time constants of AMPAR and
GABAR deactivation respectively, δ is the Dirac delta function,
t f is the time of firing of a pre-synaptic neuron and superscript
a indicates that synapses are activated. NMDAR activation
has a slower rise and decay

dga
NMDA

dt
=−

ga
NMDA

τ{p,i}
NMDA

+αNMDA · ωNMDA(1−ga
NMDA), (4)

where τNMDA is the time constant of receptor deactivation and
αNMDA controls the saturation of NMDAR channels at high
pre-synaptic spike frequencies. The slower opening of NM-
DAR channels is captured by

dωNMDA

dt
=−

ωNMDA

τω
+δ(t − t f ), (5)

where τω determines the rate of channel opening. Intrinsic
(recurrent, local feedback) synaptic current to neuron j is

I rec
j = I rec

AMPA, j + I rec
NMDA, j + I rec

GABA, j

I rec
AMPA, j = ∑k G{p,i}

AMPA · grec
AMPA,k(Vj −VE) · Wrec|pp,ip

j,k

I rec
NMDA, j = ∑k G{p,i}

NMDA · grec
NMDA,k(Vj −VE) · η j · Wrec|pp,ip

j,k

I rec
GABA, j = ∑k G{p,i}

GABA · grec
GABA,k(Vj −VI ) · Wrec|pi,ii

j,k ,
(6)

Matrices Wrec|pp,ip and Wrec|pi,ii scale conductance strength
or weight according to network connectivity. Gaussian
distance-dependent connectivity depends on the class of neu-
ron receiving and projecting spiking activity, where super-
scripts pp, ip, pi and ii denote connections to pyramidal neu-
rons from pyramidal neurons, to interneurons from pyramidal
neurons, to pyramidal neurons from interneurons, and to in-

terneurons from interneurons respectively. The weight Wrec|s
j,k

to neuron j from neuron k is given by

Wrec|s
j,k = e

−d2/2σ2
rec|s · (1−ζrec|s)+ζrec|s (7)

where d is the distance between pre- and post-synaptic neu-
rons. Parameter σrec|s determines the spatial extent of con-
nectivity and parameter ζrec|s allows the inclusion of a base-
line weight, with the function normalized to a maximum of 1
(0≤ ζrec|s < 1).

Cortical background activity was simulated by the point-
conductance model (Destexhe, Rudolph, Fellous, & Se-
jnowski, 2001):

Iback,in j = ge(t)(V −VE)+gi(t)(V −VI ). (8)

The excitatory and inhibitory conductances ge(t) and gi(t) are
updated at each timestep ∆t according to

ge,i(t +∆t) = g0e,i +[ge,i(t)−g0e,i ] · e−∆t/τe,i +Ae,iϒ (9)

where g0e and g0i are average conductances, τe and τi are
time constants, and ϒ is normally distributed random noise
with 0 mean and unit standard deviation. Amplitude coeffi-
cients Ae and Ai are defined by

Ae,i =

√

De,iτe,i

2

[

1−exp

(

−2∆t
τe,i

)]

(10)

where De = 2σ2
e/τe and Di = 2σ2

i /τi are noise ‘diffusion’ co-
efficients (see Destexhe et al. (2001)).

For inhibitory interneurons, the background conductance
gi(t) was further used to simulate the activity of a popula-
tion of VIPs. To this end, the average inhibitory conductance
g0i was scaled by control parameter Gii for all interneurons
(0.6 ≤ Gii ≤ 4), implementing the hypothesized disinhibitory
signal (Figures 1A).

We simulated the target stimuli in both tasks by provid-
ing independent, homogeneous Poisson spike trains to all



Figure 2: Network simulations with different strengths of disinhibitory control Gii .

pyramidal neurons j in the network, where spike rates were
drawn from a normal distribution with mean µsel correspond-
ing to the center of a Gaussian response field (RF) defined

by Wr f
j,k = exp(−d2/2σ2

r f ). Constant d is given above for re-

current synaptic structure Wrec|pp, σr f determines the width
of the RF and subscript k indexes the neuron at the RF cen-
ter. Spike response adaptation by upstream visually respon-
sive neurons was modeled by a step-and-decay function. The
stimuli were mediated by AMPARs only, so for all pyramidal
neurons j in the PPC network,

Isel
j = λ · Gp

AMPA · gsel
AMPA, j(Vj −VE) · Wr f

j,k, (11)

where constant λ scales extrinsic synaptic conductance. All
simulations were run with the standard implementation of Eu-
ler’s forward method and a timestep of ∆t = 0.25ms.

Results
Changing the strength of disinhibition (Gii ) produced network
behavior supporting DM (left column in Fig. 2) and WM (mid-
dle and right columns).

Disinhibition controls DM

Low values of Gii support decision-making behavior. Outside
a certain range, feedback inhibition was too weak or too strong
to support competitive dynamics. We refer to the range of Gii

that supported DM as Gdm
ii .

Consistent with electrophysiological recordings from mon-
key PPC (Churchland, Kiani, & Shadlen, 2008), the mean fir-
ing rate of the initial featureless response decreased with an
increase in the number of stimuli (n) for all Gdm

ii and all task
difficulties; the slope of decision-selective activity was lower
with higher task difficulty in the lead-up to decision time for all
Gdm

ii and all n; and the slope of this activity increased with n for
a given task difficulty for all Gdm

ii (data not shown). Consistent
with behaviour, the model made fast, accurate decisions on

Figure 3: Disinhibition controls speed-accuracy trade-off for
different number of choices n.

easy trials; and slower, less accurate decisions as task diffi-
culty was increased for all Gdm

ii , i.e. the model showed typical
psychometric and chronometric curves (Fig. 3).

Not only did disinhibition support DM in a manner consis-
tent with neural and behavioural data, but it further controlled
the speed-accuracy trade-off (SAT) on the decision task. For
a given task difficulty, decisions were faster and less accurate
with higher Gii (Fig. 3). Thus, disinhibition not only offers a
plausible mechanism by which generic cortical circuitry can be
modulated to support DM, but further offers a mechanism for
controlling decision processing according to task conditions.
Such flexible cognitive control is fundamental to choice be-
haviour [see Standage, Wang, and Blohm (2014)].

Disinhibition controls WM capacity

The network supported WM storage for higher values of Gwm
ii .

Simulated neural activity on the 1-item memory task quali-
tatively reproduced single-cell recordings from monkey PPC,
showing a rapid-onset response during the stimulus interval,
the rate of which exceeded the steady-state rate during the
delay interval (Paré & Wurtz, 1997) (data not shown).



Figure 4: WM performance. Capacity (left) depends on num-
ber of items n. Peak capacity (right) as a function of Gii .

To measure WM performance for each value of Gwm
ii , we

defined capacity K(n) as the mean number of accurately re-
tained items for each n-item memory task, and we defined
peak capacity as the maximum value of K(n). We refer to
the value of n corresponding to peak capacity as n̂ and we
refer to a decrease in capacity for n > n̂ as WM overload
(Matsuyoshi, Osaka, & Osaka, 2014). With moderately strong
disinhibition, peak capacity was consistent with that of mon-
keys [2±1 (Heyselaar, Johnston, & Paré, 2011)] and humans
[4± 1 (Luck & Vogel, 1997; Cowan, 2001)] (Fig. 4B). Peak
capacity increased very slightly for higher Gii , but WM over-
load became unrealistically pronounced, with capacity drop-
ping from K(4) ≈ 4 to K(5) ≈ 0.5. With very strong disinhi-
bition, peak capacity decreased and overload remained pro-
nounced, providing a functional ‘ceiling’ on Gii , i.e. there was
no benefit to stronger disinhibition (Fig. 4C).

Conclusion
In this proof-of-principle study, we showed that VIP-mediated
disinhibition is a potential canonical mechanism for flexi-
ble cognitive control. Furthermore, disinhibition effectively
changed the RF of stimulus-selective pyramidal cells (width
and strength, data not shown), consistent with the effect of
top-down attentional control (Martinez-Trujillo & Treue, 2004).
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