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Abstract
Convolutional neural networks, optimized for image clas-
sification, are state-of-the-art computational models for
visual neural representation. Moreover, performance op-
timization often leads to better models of neural repre-
sentation (Yamins et al., 2014). In this study, we investi-
gate whether performance optimization always increases
the similarity between the neural network and the brain,
in terms of their representations. We compared AlexNet
and a residual network on a recent human image-viewing
fMRI dataset (Horikawa & Kamitani, 2017). The original
study found a remarkable similarity between AlexNet and
the brain (Horikawa & Kamitani, 2017). Although resid-
ual networks achieved better image classification perfor-
mance, we found that the hidden representation of the
residual network is much less similar to human brain rep-
resentation, compared to AlexNet. This result suggests
that performance optimization can eventually lead to sys-
tematic deviation from human brain representation. We
conclude that additional neuroscience-inspired design is
critical for building a better representation model of the
brain.
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Introduction
Convolutional neural networks one of the state-of-the-art “rep-
resentational models” (Kriegeskorte & Kievit, 2013; Diedrich-
sen & Kriegeskorte, 2017) for vision. Many studies have
shown that the hidden states between convolutional neural
networks, typically trained on image classification, and the
neural representation in the ventral visual pathway are highly
similar (Cadena et al., 2017; Cichy, Khosla, Pantazis, Tor-
ralba, & Oliva, 2016; Eickenberg, Gramfort, Varoquaux, &
Thirion, 2017; Horikawa & Kamitani, 2017; Khaligh-Razavi
& Kriegeskorte, 2014; Kietzmann, McClure, & Kriegesko-
rte, 2017; Kriegeskorte, 2015; Seeliger et al., 2017; Shen,

Horikawa, Majima, & Kamitani, 2017; Wen, Shi, Chen, & Liu,
2017; Yamins et al., 2014; Yamins & DiCarlo, 2016). More-
over, the learned feature detectors in some convolutional neu-
ral networks are qualitatively similar to findings from neuro-
physiology (Güçlü & van Gerven, 2014; Kriegeskorte, 2015).

Interestingly, it has been observed that performance opti-
mization (e.g., image classification) can often lead to better
models of neural representation (Seibert et al., 2016; Yamins
et al., 2014; Yamins & DiCarlo, 2016). We believe that reason
is the following: for any domain, there are relatively few ways
to be optimal, whereas there are infinitely many ways to be
suboptimal. Therefore, for a given domain, for which the brain
is quite optimized, performance optimization should bring the
computational model “closer” to the brain. If this explanation
is correct, then performance optimization can eventually make
the model better than the brain, which should make the model
systematically different from how the brain works.

In the present study, we test whether performance opti-
mization always leads to a greater similarity between neural
networks and the brain, in terms of their hidden represen-
tations. In a recent functional magnetic resonance imaging
(fMRI) study (Horikawa & Kamitani, 2017), researchers used
the evoked fMRI responses to linearly predict the hidden state
of AlexNet (Krizhevsky, Sutskever, & Hinton, 2012), a stan-
dard eight-layer convolutional neural network trained on Im-
ageNet (Deng et al., 2009; Russakovsky et al., 2014). The
result indicates that the hidden representation of AlexNet is
highly similar to human brain representation. We repeated
the analysis by Horikawa and Kamitani (2017) with a residual
network with 50 layers (ResNet-50) (He, Zhang, Ren, & Sun,
2015). Although ResNet-50 is much better than AlexNet on
the ImageNet classification task (Canziani, Paszke, & Culur-
ciello, 2016), we found that the evoked fMRI responses are
much less predictive for the hidden states of ResNet-50 (Fig-
ure 1), compared than AlexNet. This result suggests that per-
formance optimization can eventually lead to systematic de-
viation from brain representations. We conclude that perfor-



Figure 1: The correlation between human fMRI data and neural network activity patterns for AlexNet (cnn) and a residual network
with 50 layers (resnet). All error bars indicate 95% bootstrapped confidence intervals. The indices represent the layer of the
respective neural network. AlexNet has eight layers: five convolutional layers, two densely connected layer and an output layer,
denoted by cnn1 to cnn8. For the residual network, we chose 8 layers from ResNet-50, roughly evenly spaced across the entire
architecture. The last layer (marked as “resnet50”) is the output layer of the residual network, chosen to match the output layer
of AlexNet (cnn8). The rest of the residual network layers are convolutional. The Region of interests (ROIs) include V1, V2, V3,
V4, lateral occipital complex (LOC), fusiform face area (FFA), and parahippocampal place area (PPA). The low-level visual cortex
(LVC) includes V1, V2, V3; The high-level visual cortex (HVC) includes V4, LOC, PPA, FFA; Visual cortex (VC) includes all ROIs.



mance optimization only is insufficient for building accurate
computational models for the brain.

Methods and Results
fMRI experiment (Horikawa & Kamitani, 2017)
In the fMRI experiment, participants performed a one-back
task for static images chosen from ImageNet. There were two
image sets. The first image set contains 1200 images, chosen
from 150 categories from ImageNet, 8 images per category.
We used this set as the train set for the later linear model.
The second image set contains 50 images, and each image
was presented 50 times to the human participant. The aver-
age evoked fMRI response across 50 repetitions provides a
more stable estimation of the fMRI response.

Deep residual network (He et al., 2015)
In this study, we used a residual network with 50 layers
(ResNet-50) (He et al., 2015). Different from a standard
convolutional neural network, residual networks have resid-
ual blocks. Each residual block consists of three layers with
a “skip connection” that directly sends the raw activity vector
from the first layer to the third layer. These skip connections
allow gradients to propagate more easily, which made training
very deep networks possible.

ResNet-50 is much more optimized for image classification
than the AlexNet. On the ImageNet classification task, the
top-one classification accuracy for ResNet-50 is above 75%,
and AlexNet’s accuracy is slightly less than 55% (Canziani et
al., 2016). The chance level of this classification task is 0.1%.
In the present study, We used the ResNet-50 implemented in
Keras (Chollet, n.d.; Chollet & Others, 2015) and pre-trained
on ImageNet.

Predicting neural network activity patterns with
fMRI responses
In the original paper (Horikawa & Kamitani, 2017), for a given
image, researchers used the evoked fMRI response to pre-
dict the activity pattern of AlexNet. Specifically, they randomly
chose 1000 units from each layer of AlexNet as the input. For
each unit, they fitted a linear model that maps the evoked
fMRI response to the hidden state of that unit. These linear
models were trained on 1200 images from 150 categories and
subsequently evaluated on the 50 test images. The average
correlations across five subjects are shown in Figure 1. The
result indicates that the hidden representation of AlexNet is
sufficiently similar to the human brain, in the sense that there
exists a linear mapping that “connect” them reasonably well.
For a more detailed description of the data, please refer to the
original paper by Horikawa and Kamitani (2017).

We repeated this analysis with a residual network (He et al.,
2015). To compare with AlexNet, we chose eight layers from
ResNet-50, roughly evenly spaced across the entire network.
The last chosen layer is also the output layer of ResNet-50.
To closely match the original AlexNet experiment (Horikawa &
Kamitani, 2017), we also randomly selected 1000 units from
each chosen layer as the input to the linear models.

Figure 1 shows that the linear prediction performance with
ResNet-50 is significantly worse than AlexNet (except for the
comparison of their first layers, resnet1 and cnn1, respec-
tively). For example, in the AlexNet experiment, the output
layer (cnn8), which should strongly encode category distinc-
tion, achieved the best performance. In comparison, the lin-
ear model performance on the output layer of the ResNet-50 is
very low. A similar pattern holds for most other comparisons.
This result suggests that ResNet-50 is an inferior model for
visual neural representation.

Conclusion
It has been observed that performance optimization can lead
to better representation models for vision (Yamins & DiCarlo,
2016; Yamins et al., 2014; Seibert et al., 2016). In the present
study, we found that the hidden states of a residual network
are much less similar to human fMRI responses, compared to
AlexNet, even though the residual network is much more opti-
mized (Canziani et al., 2016). The result suggests that neural
networks can “go too far” with performance optimization.

It is reasonable to expect some performance optimization
can bring a computational model “closer” to the brain because
there are very few ways to be optimal, whereas there are
potentially infinitely many ways to be suboptimal. However,
we believe that performance optimization can eventually lead
to systematic deviation from brain representations, especially
when the model exceeds human-level performance. Indeed,
a recent study showed that many highly optimized neural net-
works are not predictive of the behavioral performance of pri-
mates on some vision tasks (Rajalingham et al., 2018). Our
result also confirms that performance optimization by itself is
insufficient for building accurate computational models of the
brain. We believe that additional constraints informed by vi-
sual neuroscience are critical for building better computational
models. For example, a recent study shows that networks with
recurrent connections are better at predicting human fMRI re-
sponses evoked by dynamic natural stimuli (Shi, Wen, Zhang,
Han, & Liu, 2017).

Future directions
This is an ongoing project. Notably, a previous study found
that ResNet-50 outperformed AlexNet on voxel-wise modeling
(Wen et al., 2017). Our result is inconsistent with this finding,
and we are still actively investigating this inconsistency.

However, in theory, we think performance optimization
should eventually lead to systematic deviation from how the
brain works. For example, if we measure the similarity be-
tween the brain and neural networks using representational
similarity analysis (Kriegeskorte, Mur, & Bandettini, 2008),
while varying the performance of the network, we expect to
see an inverted-U shaped relation. Initially, brain-network sim-
ilarity should be positively correlated with performance (of the
network), but this correlation should eventually become neg-
ative. To test this hypothesis, we plan to investigate other
convolutional neural networks with varying image classifica-
tion performance.



Supplement

The fMRI data is obtained from OpenNeuro:
https://openneuro.org/datasets/ds001246/
versions/00002
We used the code from Horikawa and Kamitani
(2017):
https://github.com/KamitaniLab/
GenericObjectDecoding
Our code is available at:
https://github.com/aerrowfinn72/ResNet-Image
-Decoding
https://pypi.org/project/qmvpa/
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