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Abstract: Understanding the functional organization the 

brain is a centrally important theme of human neuroscience. 

Ideally, these organizational maps uncover the underlying 

structure of the brain’s functional architecture, and group-

level maps are accurate representations of the individuals in 

the sample. Using simulated fMRI data, we demonstrate that 

bagging improves the ability of clustering to uncover the 

data’s underlying structure. We show that the group-level 

maps become more correlated to the individual-level maps 

with more bootstrap aggregates, suggesting bagging 

improves the representativeness of the group-level solution. 

Using a test-retest dataset of 30 young adults, we confirm 

these findings. More specifically, we see bagging improves 

the test-retest correlation between cluster maps, and 

increases correlation between group-level and individual-

level cluster maps, and these effects are robust to number of 

clusters and length of scan used. These results suggest 

bagging is an important method for increasing reliability and 

validity of functional parcellation approaches. 
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Introduction  

The basal ganglia (BG) is a functionally heterogeneous 

structure that interacts with the cortex to produce a wide 

range of motor, cognitive, and affective functions1–8. More 

recently, it has become clear that interactions between the 

basal ganglia and cortex play a critical role in learning, 

cognition, and psychopathology9–14. Understanding the 

functional organization of these cortico-subcortical 

interactions remains a centrally important theme of human 

neuroscience. Robust examinations of these network 

interactions have been limited due to the high variability in 

the functional connectivity of these subcortical structures. 

This issue is further compounded by the low signal to noise 

often present in subcortical areas. BASC, Bootstrap Analysis 

for Stable Clusters, is a technique developed to overcome 

these limitations and provide a robust method for functional 

brain parcellation15,16. Recently, we’ve leveraged the 

processing power of Python-based pipelining framework, 

NiPype, to implement and extend this technique as an open 

source Python Package: PyBASC. Here, we demonstrate its 

ability to recover true cross-network cluster structure in 

simulated cortico-striatal data, and create more reproducible 

cortico-striatal cluster solutions in a real test-retest dataset. 
    Ensemble learning is a class of highly effective methods 

for improving model accuracy and generalizability17,18. The 

specific multi-level bootstrap aggregating (bagging) 

approach to clustering19,20 implemented in PyBASC has 

been shown to improve clustering performance20,21. Bagging 

approaches may improve clustering because training data 

might not be sufficient for choosing the single best learner 

over a group of equally performing models18,22. Even in the 

presence of a single optimal solution, as demonstrated here, 

identifying this solution might still be difficult to achieve, 

especially in the presence of noise18. Cluster stability has 

also been demonstrated to be a good hypothesis-independent 

criterion for choosing the number of clusters to derive in a 

dataset22. We use both individual and group-level bagging 

approaches to build stability maps of clustering across 

individuals. This approach allows for examination of 

individual-level variation both with- and without group-

level priors, as well as rigorous comparisons between 

individuals in functional organization patterns.  
 

Methods  

PyBASC Method 

Originally, this method was implemented in Octave, and we 

have recently implemented this method in Python to take 

advantage of the broad range of powerful libraries available 

for machine learning and neuroimaging, including NiBabel, 

Nilearn, Scikit Learn, and NiPype. This enables PyBASC to 

be highly flexible and extensible in adopting new clustering 

algorithms and implementations, but more importantly 

allows for dramatic increases in computational power 

through the use of NiPype’s easy-to-use and adjust multi-

core processing capabilities. We have also made edits to the 

processing that make PyBASC run very efficiently with 

minimal memory loads. Here, we briefly address the 

PyBASC overall methodology. For more information, we 

have also explained these methods in more detail 

elsewhere16. PyBASC has a wide range of functionalities 

that can be customized according to user preferences. Well-

performing default values are provided where applicable, but 



users can choose 1) the extent of the initial feature 

agglomeration, 2) the number of individual and 3) group-

level bootstraps, the 4) region to be parcellated and 5) the 

secondary region (optional) to use as the basis of cross-

network clustering. Users can also define the affinity 

threshold and distance metric used in the clustering 

procedures. 

Individual-level Bagging First, to reduce the 
dimensionality of the voxel wise time series, and to allow for 
better computational efficiency, we apply a hierarchical 
feature agglomeration from Scikit Learn with a neighboring 
voxel spatial constraint to each individual’s data. Then, a 
circular block bootstrap procedure is applied to create 
resampled time series data from the original functional 
image. Each of these resampled time series are then clustered 
using the clustering technique of choice. Currently k-means, 
hierarchical agglomerative, and spectral clustering are 
implemented. With each application of clustering, the cluster 
labels are transformed into an adjacency matrix of 0s and 1s 
representing whether a given voxel belongs to the same 
cluster as another voxel, and the dimension reduction 
procedure is reversed to create a voxel wise adjacency 
matrix that puts all individual-level data into the same space. 
All adjacency matrices are averaged together to create an 
individual stability matrix (ISM), which represents a 
summary of all clustering assignments across all bootstraps. 
The ISM can be clustered to produce a final consensus 
cluster assignment for each individual, or it can used in 
group-level bagging.  

 

 
Group-level Bagging PyBASC applies bagging to ISMs 

across individuals, recreating a resampled group of ISMs 

from the original pool of subjects. The ISMs for each group-

level bootstrap are averaged and an adjacency matrix is 

created through clustering. The adjacency matrix across all 

bootstraps are averaged to create a group stability matrix 

(GSM). The GSM is the final output of the group-level 

bagging, along with the cluster labels, and the group-level 

stability for each cluster.  While the ISM represents a 
summary of the clusterings across all bootstraps for each 

individual, the GSM represents a summary of the clustering 

across all bootstraps for the group. We compare each 

individual’s ISM to the GSM as a detailed way of assessing 

similarities between the individual and group-level 

clusterings. 
 

Data Used and Created 

Creating Individual-Level Bagging Simulations We 
generated 1500 simulated time series with a two clusters, 
each corresponding to 500 and 1000 of the time series 
respectively, and a signal to noise ratio (B/E) of 0.05/2.5, as 
with some higher values we found ceiling effects in the 
clustering. We performed individual-level clustering on 
these data with a simplified first level analysis of PyBASC. 
We repeated this analysis with and without bagging, and 
across a range of bootstraps to aggregate. For each 
combination of parameters, we repeated the analysis 50 
times to calculate an estimate of the reliability of our effects 
(Figure 1). We use Ward’s method for hierarchical 
agglomerative clustering because this method demonstrated 
superior accuracy compared to other techniques in our 
simulations (not presented here). This choice is also 
supported by recent work suggesting Ward’s method to be 
superior to K-means and spectral clustering for both 
reproducibility and cluster accuracy in simulation and real 
test datasets23. 

 
Creating Group-Level Bagging Simulations To simulate 

the motor corticostriatal thalamocortical network, we used 

the same data generation algorithm above to create simulated 

time series with the same dimensions as the bilateral striatum 

and thalamus, and the Yeo Motor network24. We transformed 

these synthetic data into NIFTI images and used these 

synthetic MRI data in a full run of the PyBASC pipeline. We 

used a signal to noise ratio of 0.05/3 for our group-level data, 

as the group-level results are much better at capturing 

underlying structure in the presence of noise than the 

individual-level results. We clustered the simulated striatum 

and thalamus regions with respect to their connectivity to the 

Yeo Motor network to simulate corticostriatal connectivity. 

We repeated this analysis with and without bagging, and 

across a range of bootstraps to aggregate. We also varied the 

number of volumes in each 4D dataset, the SNR of the data, 

and the individual-level bootstraps as in the IBS simulation. 

Assessing HNU Test Retest Data We used full runs of the 
PyBASC pipeline to investigate the impact of multilevel 
bagging on the test retest reproducibility using the HNU 
CORR Dataset25. 30 young adults had a 10 minute resting 
state scan acquired once every three days for a month, for a 
total of 10 sessions per person. To create a reference dataset 
for each participant, we concatenated each participant’s even 
numbered session scans. We used PyBASC on the Reference 
data with cross clustering aiming to cluster the striatum and 
thalamus with respect to its connectivity to the Yeo motor 
network. We compared the group stability matrices in the 
Reference and Replication datasets, which were created 
from either 10, 20, 30, or 40 minutes of data from the odd 
numbered scan sessions. Broadly speaking, group cluster 
solutions should be representative of the individuals in the 
sample. To assess the extent to which our group-level 
parcellations were representative of each of the individuals 
in the sample, we also correlated each individual’s ISM 
generated from PyBASC with the GSM generated from the 



group. This allowed us to examine differences in how 
representative the group-level solutions were across levels 
of bootstrap aggregation, and length of our replication scans. 

Results 

Individual Bagging Simulations 

Simulating the clustering approach at the individual-level 

demonstrated that bagging provides large improvements in 

the accuracy of the clustering from no bootstraps to 100 

bootstraps (Figure 1). We also demonstrate that bagging 

considerably reduces the variability in accuracy of the 

cluster solution. The 

effect of bagging 

replicates across 100, 

200, and 400 volumes. 

Most notably, with 

only 100 volumes, the 

100 bootstrap 

aggregate clusters are 

more accurate than the 

200 volume data are 

without bagging, and is 

equivalent to the 400 

volume data without 

bagging. 

Group Bagging Simulations 

In Figure 2, we demonstrate with group-level simulated MRI 

data, that with greater bootstrap aggregates, the group-level 

maps become more representative of each of the individual-

level maps. Following the same data generation algorithm 

we created 30 subjects and 

demonstrated that 

multilevel bagging also 

increases the the 

coherence of the 

individual and group-level 

stability matrices, 

suggesting that it creates 

group-level clusters 

solutions that are more 

representative of the 

individual subjects.  

HNU Data 

As expected, we found that having more data improves the 

reproducibility of our cluster assignments. Assessing the 

impact of bagging on the actual HNU data revealed that 

bagging improves clustering reproducibility (Figure 3). We 

found that using bootstrap aggregation increases the 

correlation between the group stability matrix of the 

reference and replication datasets, and that this effect holds 

across a range of volumes and cluster numbers (Figure 3). 

We found that as the number of clusters increase, bagging 

improves the reproducibility of the cluster assignments more 

(Figure 3), suggesting that with larger networks and more 

regions, using bagging will further improve the 

reproducibility of the functional parcellation. We also found 

that, that bootstrap aggregation also improves the group-

individual coherence (Figure 4), with results in the HNU 

following along with our simulations in Figure 2.  

 
Discussion 

Producing replicable functional parcellations is a critical 

step for understanding the organization of brain networks. 

Furthermore, in areas of the brain that are typically difficult 

to study, such as the basal ganglia, we need advanced 

methods that are robust against noise. In the current work, 

we demonstrated that bagging, as implemented in PyBASC, 

offers a range of important advantages for creating an 

accurate functional parcellation of the brain. First, we use 

simulations to show that without bagging, individual-level 

clustering solutions have high variance and are not 

necessarily able to capture the underlying data structure 

reliably (Figure 1). With bagging however, clusters solutions 

are significantly more consistent, and this consistency grows 

with the number of bootstraps aggregated. When creating 

functional parcellations at the individual-level, it’s very 

important to know the extent to which the parcellations are 

reliable, and our results suggest that methods such as 

bagging may be employed to improve reliability of the 

clustering solutions.  

   Without bagging, not only are individual-level solutions 

less accurate, they tend to be more variable as well. In our 

group-level simulations, we found that the group-level 

clusterings map onto the individual-level results better as a 

function of bootstrap aggregation. The more bootstraps 

aggregated, the less variability in cluster accuracy we see at 

the individual-level and the more accurately the group-level 

cluster results represent the individual-level clustering 

(Figure 2). Finally, we replicate these simulation results in 

the HNU Dataset, demonstrating that the theoretical effects 

seen in our simulations hold in real data as well. We show 

that not only does bagging improve clustering accuracy 

(Figure 1), but it also improves reproducibility of our 

findings and this effect is robust to number of clusters and 

length of data (10-40 minutes) (Figure 3). Just as we saw that 

bagging improves similarity of our group- and individual-

level cluster results in simulation (Figure 2), we demonstrate 

that it has the same impact in real data, and this effect is also 

robust to number of clusters and length of data (Figure 4). 

Taken together, our results demonstrate that multilevel 

bagging provides not only better group-level estimates of 

functional parcellation, but also better group-level 

representations of individual-level parcellations. This 

technique may offer a unique opportunity for reliably 

estimating functional network organization in datasets with 

short scan times. Furthermore, given this technique 

improves reliability, this technique may offer better insight 



into how individual differences in functional organization 

contribute to variation in cognition, behavior, and 

psychopathology. 
 

Future Directions 

We plan to apply this technique to a range of cortico-striatal 

circuits and map their maturation across childhood and 

adolescent development. Using PyBASC, we can develop 

robust parcellations of corticostriatal networks, and will be 

able to use these network nodes to provide reliable and 

detailed maps of the developmental trajectories of these 

circuits and their role in psychopathology, cognitive 

development, and learning. 
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