Natural Sound Statistics Predict Auditory Grouping Principles
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Abstract

Events and objects in the world must be inferred from
sensory signals to support behavior. Because sensory
signals are transduced with measurements that are tem-
porally and spatially local, the estimation of a particular
object or event can be viewed as the result of group-
ing these local measurements into representations of
their common causes. In the auditory system, percep-
tual grouping is believed to exploit acoustic regularities
of natural sounds, such as the tendency of frequencies
to be harmonically related or to share a common onset.
However, acoustic grouping cues have traditionally been
identified using intuitions and informal observation, and
investigated using simple, artificial stimuli. As a result,
the relevance of known grouping cues to real-world au-
ditory scene analysis remains unclear, and additional or
alternative cues remain a possibility. Here we derive audi-
tory grouping cues from co-occurrence statistics of local
acoustic features in natural sounds. This process recov-
ers established cues but also reveals previously unappre-
ciated aspects of grouping. The results provide confirma-
tion that auditory grouping is adapted to natural stimu-
lus statistics, and show how these statistics can be har-
nessed to reveal novel grouping phenomena.
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Methods

We first derived a set of primitive auditory patterns by learn-
ing a dictionary of spectrotemporal features from a corpus of
natural sounds using sparse convolutional coding with non-
negativity constraints (Fig. 1). Specifically, we trained a dic-
tionary of 80 spectrotemporal features (kernels) using non-
negative, convolutional sparse coding (Fig. 1A,B) on a corpus
of speech sounds (TIMIT) and musical instruments.

We then extracted sets of features that either were or were
not strongly co-activated in the corpus. For each feature,
we computed the average activations of all other features
conditioned on the activation of the selected feature exceed-
ing its 95th percentile (Fig. 2). We considered a kernel
as co-occurring or not with the selected feature depending
on whether this conditional average activation was larger or
smaller than its baseline activation (the mean feature activa-
tion across the entire speech corpus).

The co-occurrence statistics form a three-dimensional ten-
sor that is not easily inspected (containing the co-activation
map for each feature, one of which is shown in Fig. 2B. To
relate these statistics to a compact representation of acoustic
properties, we designed a discriminative model based on lo-
gistic regression. The model projects each acoustic feature
onto templates in the time-frequency or modulation planes
(the two most common domains in which to examine sound;
Fig. 4 A, left and right column respectively), and uses the dif-
ference in the projections for two features to predict whether
they have high co-occurrence probability or not.

To test whether human listeners have internalized the mea-
sured co-occurrence statistics, we conducted a psychophysi-
cal experiment with stimuli generated by superimposing sets
of features. On each ftrial, subjects heard two such stimuli
and judged which of them contained two sound sources. One
feature pair was selected from the 10% of feature pairs with
highest co-occurrence probability, and the other from the 10%
of feature pairs with lowest co-occurrence probability. To set
a ceiling level on task performance, in another condition, one
stimulus was an excerpt of a single speech signal while the
other was an excerpt of a mixture of talkers. Because speech
contains a superset of the dependencies measured in the co-
occurrence tensor, performance on this condition should pro-
vide an upper limit on performance for the task with feature su-
perpositions. As a control condition we conducted the same
task but with stimuli generated from co-occurrence statistics
of modulated noise.

Results

Human listeners reliably identified unlikely sets of features
as sounds consisting of two sources (Fig. 3B, center), only
slightly below the level for speech mixtures (Fig. 3B, left). In
contrast, listeners were unable to identify the unlikely feature
pairs generated from co-occurrence statistics from modulated
noise (Fig. 3B, right). This result suggests that humans have
internalized aspects of the co-occurrence tensor and asso-
ciate the learned statistics with the perception of grouping.
The discriminative template model provides some insight
into what is captured by the co-occurrence statistics. The
model learned four templates, two in each of the time-
frequency and modulation planes (Fig. 4). Features with
similar projections onto the templates were predicted to co-
occur, and the four templates were sufficient to differentiate
co-occurring from non-co-occurring features with reasonable



accuracy (81%).

Inspection of the learned templates reveals interpretable
structure. The first spectrotemporal template (Fig. 4A, top
left) can be interpreted as computing a spectral centroid, im-
plying that features with similar frequency content are likely
to co-occur. Spectral differences are known to influence the
grouping of sounds across time (Bregman, 1994; van Noor-
den, 1977), but this result suggests that they also should af-
fect the grouping of concurrent features. The second spec-
trotemporal template appears to compute a temporal deriva-
tive - features that will have similar projections will tend to have
temporally aligned onsets or offsets, recapitulating the estab-
lished grouping cue of common onset (Rasch, 1978; Darwin
& Ciocca, 1992). This template also appears to register mis-
aligned sets of harmonics, another established grouping cue
(Moore, Glasberg, & Peters, 1986; De Cheveigné, McAdams,
& Marin, 1997; Popham, Boebinger, Ellis, Kawahara, & Mc-
Dermott, 2018).

The modulation plane features compute differences be-
tween different regions of the modulation plane, and thus in-
dicate that features with different spectral shapes (tone vs.
clicks, for example) do not co-occur. To our knowledge this
type of cue has not been previously noted in the auditory
scene analysis literature.

Discussion

The results illustrate a way of measuring natural sound statis-
tics likely to be relevant for grouping, and show that they con-
tain interpretable structure. The statistics justify previously
known grouping cues such as common onset and harmonic-
ity, but also reveal previously unacknowledged principles of
grouping such as frequency separation and spectrotemporal
modulation differences. Moreover, we have provided evidence
that humans have internalized these statistics and use them to
make grouping judgments. These results provide what to our
knowledge is the first quantitative link between auditory per-
ceptual grouping and natural sound statistics, and show how
these statistics may be harnessed to study auditory scene
analysis.
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Figure 1: Spectrotemporal features A) Dictionary of spectrotemporal features learned from a corpus of speech and instrument
sounds (64 out of 80 displayed). B) A cochleogram excerpt (top row) is encoded by a feature activation map (bottom row).
Contributions of two individual features to cochleogram encoding are depicted in middle rows. Colors correspond to features
highlighted in panel A.
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Figure 2: Feature co-occurrence statistics A) Example feature of interest B) A co-occurrence matrix for that feature of interest.
The color plots the log-ratio of the conditional activation of each feature at each time offset to its baseline activation. Three
example co-active and non-co-active features are depicted in the right column.
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Figure 3: Experimental results A) An experimental trial. Subjects judged which of the two sounds was a mixture of two
sources. B) Experimental results for mixtures of natural sounds (left), feature pairs derived from natural sound statistics (middle),

and feature pairs derived from modulated noise statistics (right).
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Figure 4: Grouping cues derived from co-occurrence statistics A) Time-frequency and modulation cues learned by the
discriminative model. The model classifies a feature pair to be generated by two sources if they have different projections onto
the learned templates (two learned in the time-frequency plane, and two learned in the modulation plane). B) Example feature
pairs judged by the model to be coming from a single source (left) and two sources (right).
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