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Abstract: 

Brain imaging shed lights on brain development which is 
closely related to various cognitive abilities. Immaturity 
and accelerated aging of the brain are typical 
consequence of developmental brain disorders. We 
developed a deep learning method to use convolutional 
neural networks (CNNs) to predict age of patients with 
post-traumatic stress disorders (PTSD) and healthy 
controls based on multi-modal brain imaging. N-fold 
cross validation was conducted to evaluate the 
prediction accuracy of age on healthy controls. Then the 
CNNs were trained with data of healthy controls and 
tested with PTSD group and another healthy control 
group with traumatic experiences, but no long-lasting 
PTSD symptoms. Our result showed that CNNs can be 
used to predict age with accuracy comparable to state-
of-the-art machine learning methods such as ridge 
regression. Importantly, we found that the predicted age 
for PTSD patients are older than that of the control group, 
indicating an accelerated aging process of the brain in 
PTSD patients relative to healthy population. 
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Introduction 

Magnetic resonance imaging (MRI) and functional MRI 
(fMRI) provide researchers with a powerful tool to 
examine the structural and functional characteristics of 
human brain. Recently, machine learning methods are 
widely applied in brain imaging analysis of patients with 
a variety of mental disorders such as Alzheimer disease 
(AD) (Kloppel et al., 2008), schizophrenia (Sun et al., 
2009) and PTSD (Niehaus et al., 2014). These studies 
aimed to explore the neural signature of mental 

disorders, as well as to build mathematical models to 
differentiate patients from healthy control. One popular 
application of machine learning methods is to predict 
biological age with brain imaging. It has been found that 
gray matter volume (GMV) combined with fractional 
anisotropy (FA) can predict age with high degree of 
accuracy (Erus et al., 2015). Multi-model brain imaging 
can further improve age prediction accuracy (Liem et 
al., 2017). It is important to note that brain age could be 
used as an aging biomarker of an individual’s brain 
health, which allows ones to assess cognitive precocity 
and delay. The difference between predicted age and 
chronological age is not merely due to noise, but 
reflects the brain maturity. Thus, the predicted age with 
brain imaging features serves as a brain developmental 
index. Other studies have found that the brain ages 
were estimated to be older than the chronological ages 
in patients with traumatic brain injury (Cole, Leech, & 
Sharp, 2015) and schizophrenia (Schnack et al., 2016). 
The results suggest the accelerated aging effects of 
brain in patients with brain injuries and mental 
disorders. 

With the growing size of brain imaging data, deep 
neural network (DNN) has become a promising tool to 
explore more complex patterns of brain imaging. It is 
attractive to train the model with raw imaging data 
without standard pre-processing procedures. Recent 
study showed that convolutional neural network with 
raw brain images can achieve age prediction accuracy 
comparable to traditional regression models (Cole et 
al., 2017). In that work, however, only T1-weighted 



structural MRI were used. With the availability of 
different brain imaging modalities, likely representing 
different characteristics of the brain tissue, it is 
conceivable to combine multimodal neuroimaging data 
for brain age prediction. In the current study, we 
proposed a deep learning method to predict the brain 
age of PTSD patients and healthy controls using 
multimodal neuroimaging. Specifically, CNNs were 
trained with brain imaging features extracted from T1-
weighted structural MRI, diffusion tensor imaging (DTI) 
and resting state fMRI. We also compared our results 
with ridge regression.  

Methods 

Brain imaging data. 

We obtained multimodal brain imaging data including 
T1-weighted imaging, diffusion tenser imaging (DTI), 
and resting state functional brain imaging (rsfMRI) from 
the Philadelphia Neurodevelopmental Cohort (PNC) 
data base (Satterthwaite et al., 2014). We selected 165 
subjects, among which 70 (50 females) were PTSD 
patients (PTSD group), 35 (9 females) were healthy 
controls who experienced traumatic events without 
long-lasting PTSD symptoms (trauma group) and 60 
(29 females) were healthy control without traumatic 
experiences or PTSD. 

Brain imaging processing 

Gray matter volume (GMV) were extracted from T1 
image. Fractional anisotropy (FA) was extracted from 
the DTI data. FA is a summary measure of 
microstructural integrity. Amplitude of low-frequency 
fluctuation (ALFF) was extracted from the rsfMRI data. 
ALFF measures the brain signal variability of a given 
voxel in the frequency domain. GMV and resting state 
features were averaged based on the brain regions in 
the Harvard-Oxford probabilistic atlases. DTI features 
were averaged based on the John Hopkins white matter 
atlas. 

Age prediction with Neural networks 

We built a CNN to predict brain age with neuroimaging 
data with TensorFlow and Keras. For each layer, 
Rectified Linear Unit (ReLU) activation function was 
used, together with L2-norm regularization with 
parameter set to .01. The network was trained with 
brain imaging features on the healthy controls and 
tested on the PTSD and trauma group. Prediction 
accuracy was defined as Pearson correlation between 

the chronological age and the predicted brain age. To 
evaluate prediction performance on the healthy control 
group, 3-fold cross validation (CV) was run on the 
healthy control data. In each CV, 2 folds of data were 
selected to train the model and the remaining fold was 
tested with the neural network. The model was run for 
each modality of GMV, FA and ALFF separately and for 
all three modalities combined. 

Age prediction with ridge regression 

We also run ridge regression with L2-norm 
regularization. The parameter of regularization was 
optimized with a 5-fold cross validation on the healthy 
control group. Then the model was applied on the PTSD 
and trauma group. To evaluate prediction accuracy on 
the healthy control group, a nested 5-fold CV was run 
on the healthy control data. The inner CV was run to 
optimize the regularization parameter and the outer CV 
was run to test the performance of the model. Prediction 
accuracy was defined same as above in the neural 
network session. The model was run with GMV, FA and 
ALFF separately and with all three modalities 
combined. 

Results 

Prediction with CNNs 

The prediction performance on age of CNNs for the 
healthy control (HC), PTSD and trauma group are 
shown in Table 1. Among the three modalities, the 
prediction accuracy of age with GMV are highest on all 
three groups. When multi-modal combined, the 
prediction accuracies are higher for the healthy control 
and trauma group, but not for PTSD. As shown in Figure 
1, the predicted brain age of PTSD group is older than 
that of the trauma group. And the difference between 
predicted brain age and chronological age is smaller in 
the trauma group than that in the PTSD group (p=.04) 
(Figure 2). 

Table 1: Prediction accuracy of neural networks.  

Modality HC PTSD Trauma 
GMV .34 (6.77) .54 (7.47) .43 (6.30) 
FA .01 (7.48) .07 (7.85) .10 (6.50) 
ALFF .05 (6.31) .17 (7.18) .32 (7.11) 
Multi-modal .44 (6.38) .43 (6.39) .62 (6.49) 

Prediction accuracies are defined as Pearson’ correlation 
between the model predicted age and the biological age. 
The values in brackets are mean square error. 



 

Figure 1: Scatter plot of age and predicted age by neural 
network with multi-modal imaging for the PTSD and trauma 
group. 

 

Figure 2: Difference between predicted age and 
chronological age by neural network with multi-modal 
features for the PTSD and trauma group. The age difference 
denotes the difference between predicted brain age and 
chronological age.  

Prediction with ridge regression 

The prediction performance of ridge regression on the 
healthy control, PTSD and trauma group are shown in 
Table 2. The prediction accuracy of GMV and multi-
modal are higher than that of the FA and ALFF features. 
Similar to the results with CNNs, the predicted age for 
PTSD is also higher than that for the trauma group 
(Figure 3), but this effect exists only with GMV features. 
In addition, the difference between predicted brain age 
and chronological age for the trauma group are also 
smaller than that of the PTSD group (p=.04) (Figure 4). 

 

Table 2: Prediction accuracy of ridge regression. 

Modality HC PTSD Trauma 
GMV .81 (2.67) .67 (2.25) .78 (2.52) 
FA .48 (3.65) .46 (2.85) .57 (3.23) 
ALFF .54 (3.70) .56 (2.60) .58 (3.20) 
Multi-modal .81 (2.60) .75 (2.01) .83 (2.10) 

 

Figure 3: Scatter plot of age and predicted age by ridge 
regression with GMV features for the PTSD and trauma 
group. 

 

Figure 4: Difference between predicted age and 
chronological age by ridge regression with GMV features for 
the PTSD and trauma group. 
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Discussion 

Brain age has been shown to be sensitive in indicating 
subtle and widespread age-associated brain structural 
and functional changes. Brain age predicted by 
neuroimaging data has the potential as a biomarker to 
characterize the normal brain development and clinical 
neuropsychiatric disorders. The current study used 
CNN and ridge regression to predict brain age of the 
PTSD patients and healthy controls. We found ridge 
regression can achieve high prediction accuracy on the 
healthy controls and PTSD patients with each of the 
three brain imaging modalities, as well as the combined 
multi-modal imaging. The prediction accuracy for 
CNNs, albeit low, can also be used for brain age 
prediction with GMV and multi-modal brain imaging. 
The predicted age for the PTSD group is larger than that 
on the trauma group that has traumatic experience but 
not PTSD symptoms. The differences between the 
predicted age and chronological age for PTSD patients 
were larger than that of the trauma group. Our results 
provide evidence of the accelerated aging process in 
the brain of PTSD patients, as similar to patients with 
traumatic brain injury and schizophrenia.  

Even though the CNN did not have better age 
prediction compared to ridge regression, it had higher 
prediction accuracy on the multi-modal brain imaging 
than that on any single modality. In addition, the 
accelerated aging of PTSD was evident with CNN on 
multi-modal imaging, whereas for ridge regression, it 
was found only on GMV features. This result indicates 
that CNN is capable of integrating multi-modal imaging 
better than ridge regression. One reason for the higher 
prediction accuracy for ridge regression may be due to 
the optimization of the regularization parameters in the 
nested cross validation. We did not fine tune the 
parameters in the CNNs but instead used the default 
values. Furthermore, we should note that our sample 
size is much smaller than that in the previous work 
(Cole et al., 2017). We expect that the brain age 
prediction could be further improved as the sample size 
is increased and the parameters for CNN are optimized 
in the future. 
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