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Abstract: 

How do we represent the shape of different real-world 
objects? Modern approaches to explore this question 
with deep neural networks are highly efficient but as of 
yet not clearly interpretable. In this paper, we examined 
the Normalized Contour Curvature model (NCC), which 
represents a shape as an interpretable histogram over 
curvature values (from very concave, to straight, to very 
convex). To explore the shape-space produced by this 
model, we submitted the feature profile of thousands of 
objects to a principal component analysis, revealing 
that 4 axes summarized the space. To compare this 
model to behavior we tested both perceived curvature 
(E1) and overall shape similarity (E2). Behavioral 
judgments of the perceived curvature of an object were 
well predicted by this model, largely isolated to the 
second PC loading. Behavioral measures of overall 
shape similarity were also predicted reasonably well 
using the four PCs, and approached the performance of 
deep neural networks (E3).  The success of this model 
implies that perceptual shape-space can be 
summarized with a relatively small number of 
dimensions through an interpretable feature space, 
where the major axes are meaningfully related to 
perceived shape and curvature of inanimate objects.   
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Introduction 

Objects in the world come in all different shapes and 
sizes, and understanding how our brain represents 
them is a complex problem (DiCarlo et al., 2012). 

Modern approaches with deep neural networks 
(DNNs) have been very efficient in capturing shape 
and predicting neural responses to real-world objects 
(Yamins & DiCarlo, 2016). However, the model fits are 
currently harder to interpret, because of the hundreds 
of units included within each layer.  

Here, we consider a new Normalized Contour 
Curvature model (NCC), and examine how well this 
model predicts behavioral judgments of shape and 
curvature relative to deep neural networks. The NCC 
model takes as input a picture of a real-world object, 
then uses pixel intensity to compute a series of 
contours over a slightly blurred image, then computes 
the curvature along each point along these contours, 
and finally aggregates these values into a histogram. 
The output is a probability distribution of curvature 
values, from very convex, to straight, to very concave 
(see Figure 1).  An advantage of this model is that the 
extracted features are easily interpretable. Further, this 
model is naturally rotation-, translation-, and scale-
invariant.  

Methods and Results 

NCC Shape-Space  

To understand the kind of objects that are similar and 
different under the NCC model, we aimed to 
characterize the “shape-space” of this model using a 



wide range of inanimate objects. To do so, NCC 
features were extracted from pictures of ~7k inanimate 
objects to the model, and then submitted to a principal 
component analysis.  A parallel analysis (Horn, 1965) 
revealed that 4 principal components (PCs) explained 
variance significantly better than a random scrambling 
of the features (see Figure 2). 

 The first PC (29% variance explained) put objects 
with narrow convexities such as dumbbells at the 
positive pole, and objects with wide convexities such 
as bowling balls at the negative pole. The second PC 
(21% of variance explained) pitted objects with 
convexities and concavities against objects with 
straight contour lines, similar to intuitive judgments of 
curvature. The third PC (14% of variance explained) 
put objects with internal patterns and line junctions at 
one pole, and objects with elongated shapes at the 
other pole. For the fourth PC (9% variance explained) 
a clear qualitative divide wasn’t as easily identifiable.  

Experiment 1: Curvature Judgments 

First, we examined whether this space could predict 
perceived curvature ratings along a curvy-to-boxy 
scale, as this perceptual axis has been show to 
account for a notable amount of variance in neural 
response patterns along the ventral stream (Long et 
al., 2017).  

 The stimulus set consisted of 72 images of 
inanimate object on a white background. Twenty raters 
rated each item on a curvy-to-boxy 5-point scale, for a 

total of 20 ratings per image. Next, we examined how 
well these behavioral curvature scores could be 
predicted by a weighted combination of the four 
shape-space PCs with a simple linear regression (9-
fold cross-validation).  

 Overall, perceptual curvature judgments were 
predicted remarkably well (Pearsons’s r = 0.69, inter-
class correlation = 0.53), with strongest weights on the 
second PC.  This result suggests that the shape-space 
produced by the NCC model naturally captures a 
perceived curvature axis as the second principle 
component.   

Experiment 2: Overall Shape Similarity 

We then explored how the NCC model would perform 
in predicting more generic shape similarity ratings, to 
test whether the four-dimensional space could well 
summarize the overall shape representation in 
behavioral judgments.  

 Participants (n = 20) were asked to arrange 72 
images of inanimate objects in a circular arena based 
on shape similarity (Kriegeskorte and Mur, 2012), and 
to actively avoid organizing them based on other 
properties (e.g. color, context). As in Experiment 1, we 
adopted a modeling approach in which we tested how 
well behavioral ratings were predicted by a weighted 

Figure 1: Histograms resulting from the Normalized 
Contour Curvature model applied to two objects. 

 

 

 

Figure 2: The four PCs resulting from the Principal 
Component Analysis. 

 



combination of our four PCs (9-fold cross-validation). 
In this case, however, the behavioral ratings were in 
the form of a Euclidean distance matrix, with a 
distance value for each pair of objects. Thus, the PCs 
were transformed into Euclidean distance matrices, 
and to avoid negative beta weights we performed a 
non-negative least square regression (NNLS; Jozwik 
et al., 2016). 

The NCC model predicted overall shape similarity 
judgments almost at the noise ceiling (Kendall’s 𝜏 = 
0.21, noise ceiling = 0.28-0.34). This result suggests 
that the model is able to predict part of the human 
shape representation; however there also seems to be 
some additional variance that cannot be accounted for 
by our model. With regard to the average weights 
assigned to the PCs, we observed an important role of 
all four PCs. 

Experiment 3:  DNN Performance in Overall 
Shape Similarity 

To put the NCC model’s performance into context, we 
compared its prediction in the overall shape similarity 
judgments with a pre-trained deep neural network’s 
performance.  

 For each layer of Alexnet (5 convolutional and 3 fully 
connected layers), we measured activations to each of 
the 72 items, and produced a representational 
dissimilarity matrix, using a Euclidean distance metric. 
We then used the eight distance matrices as predictive 
variables for a model predicting the behavioral overall 
shape similarity data (9-fold cross-validation; NNLS 
regression, as in Experiment 2).  

 The DNN model predicted overall shape similarity 
judgments better than the NCC model, and within the 
noise ceiling of the behavioral data (Kendall’s 𝜏	= 0.28, 
noise ceiling = 0.28-0.34). When looking at the layers 
that weighted most in this performance, conv3, fc6 and 
fc8 showed the strongest weight.  Thus, we confirm 
that deep nets are best at maximizes predictive power, 
but what information might be contained in these 
layers is not easily interpretable.  

Conclusions 

The way in which objects’ shape is represented in 
humans is still the subject of much exploration. In the 
past few years, modeling approaches with DNNs have 
produced exciting results; however, these approaches 
are still limited by our ability to interpret the hundreds 

of units within each layer. Simpler, quantitative models 
of shape might serve a complementary role to help us 
better understand and interpret these representations. 
The Normalized Contour Curvature model examined in 
the current work reveals that it is possible for the 
shape-space of objects to be parameterized by a 
relatively small number of dimensions. 
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