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Abstract: 

Recent computer vision work dissecting 
information from within the layers of deep neural 
networks revealed emergence of human-
interpretable concepts within these artificial units. 
In the current study, using representational 
similarity analysis, we compare convolutional 
layers of DNNs trained for object and scene 
recognition (hybrid AlexNet) with regions along 
ventral visual pathway to ask whether these layers 
and regions share topographical correspondence. 
Results reveal the emergence of a brain inspired 
topographical organization in this hybrid-net, such 
that layer-units showing strong central-bias were 
associated with cortical regions with foveal 
tendencies, and layer-units showing greater 
selectivity for image boundaries and backgrounds 
were associated with cortical regions showing 
strong peripheral preference. The emergence of a 
categorical topographical correspondence between 
deepnets and visual regions of interests further 
strengthens the role of deepnets as models of the 
inner workings of perceptual networks in the brain.  
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Introduction  

Decades of human neuroscience research has 
revealed that distinct cortical regions are differentially 
 

activated by separate image categories. Moreover, 
these category selective regions demonstrate an 
organizing principle such that some show a central 
visual field bias while others a peripheral bias (Levy et 
al., 2001).  

 
Recent works at the intersection of computer vision and 
neuroscience have suggested that artificial visual 
systems, such as deepnets, learn and interpret visual 
features along a hierarchy much like the human visual 
system, with different hidden units within the network 
spontaneously learning representations of features that 
guide the accuracy of the output (Khaligh-Razavi et al., 
2014; Yamins et al., 2014; Cichy et al., 2016; Bau et al., 
2017). For instance, deepnets trained on scene 
categorization showed the spontaneous emergence of 
object representations in certain layers of the network 
(Zhou et al., 2014; Bau et al., 2017).  

 
Given that distinct visual categories are mapped 
according to a center/periphery rule in the human visual 
system, we asked whether deepnets might also 
spontaneously learn this topographical organization. To 
test this hypothesis, we probed the individual layers of 
a hybrid network trained on both object and scene 
categorization with representations pulled from several 
levels of the visual hierarchy in the human brain. We 
predict that layer-units associated with object 
emergence will show a strong central-bias, while layer 
units associated with global representations will 
demonstrate peripheral selectivity. 

 



 
 
Figure 1: A) Examples of stimuli in five categories. B) 

Regions of interest along the ventral visual pathway. C) 
A deep neural network model trained both on imageNet 
and Places datasets (hybrid-AlexNet). 

 

Method 

Experiment Design and Stimulus Set 

To study the categorical representations in the human 
brain we selected 156 natural images organized in 5 
categories (faces, bodies, animals, objects and 
scenes). Examples of stimuli are shown in Figure 1A. 
We collected fMRI data while participants (N=16) 
viewed these images presented at the center of the 
screen at 6° visual angle for the duration of 0.5s with 
2.5s interstimulus intervals and performed an 
orthogonal task (detecting a color change in the fixation 
cross). The participants completed two fMRI sessions 
of 5-8 runs each (11-15 runs over the two sessions). 
Each image was presented once per run in randomized 
order. 

Convolutional Neural Network Architecture 
and Training 

To investigate the correspondence of topography in 
category-specific cortical regions and deep 
convolutional neural network, we compared fMRI data  

 

Figure 2: Topographical maps. DNN layer RDM 
matrices are computed by pairwise comparison of the 
network activation patterns extracted at (x,y) location in 
the feature map for each image condition. The ROI 
RDM matrices are computed by pairwise comparison of 
t-value pattern vectors in that area.  Comparison of 
neural network RDMs at (x,y) position with the brain 
ROI RDM by computing Spearman’s Rho correlation 
yield a topographical correlation map which is then up-
sampled to the image size. 

 

extracted from regions of interest along ventral visual 
stream with a DNN with AlexNet architecture (Figure1C) 
trained both on object and scene image categories 
(hybrid-AlexNet, Zhou et al., 2014). 

Brain and DNN Topographical Maps 

To compare category-specific neural and computational 
model representations we used representational 
similarity analysis (Kriegeskorte et al., 2008). We 
defined anatomically four regions of interest (ROIs) 
along the ventral stream, early visual cortex (EVC), 
lateral occipital area (LO), fusiform area, and 
parahippocampal area (PHC) (see Figure1B).  
 
In each ROI and for each of 156 image conditions we 
extracted the t-value activation patterns, arranged them 
into vector patterns, and then computed the pairwise 
dissimilarity of these 156 vector patterns by calculating 
1 minus Pearson correlations. This yielded a 156×156 
representational dissimilarity matrix (RDM) for each 
subject and ROI. 
 
 



 

Figure 3: Neural representations along ventral visual pathway. RDM matrices, and 2D multidimensional scaling 
visualization of stimuli depicted for early visual cortex (EVC), lateral occipital area (LO), parahippocampal area 
(PHC) and fusiform area. 

 

To create the topographical maps, we fed the images to 
the deep network and extracted the 3D activation 
patterns from its convolutional layers. For each entered 
image the first 2 Dimensions have a spatial relation with 
the image space (width and height). As illustrated in 
Figure 2, at each (x,y) position in feature maps, we 
extracted a pattern vector with the length equivalent to 
its depth and constructed the RDM matrix from the 
neural network activity patterns at each (x,y) location. 
Comparison of these RDM matrices of each layer with 
a brain ROI RDM results in a 2D correlation map which 
we then up-sample it to the image size and call it a 
topographical map. This analysis yields a topographical 
map for comparison of each convolutional layer and 
each brain region.    

Results and Discussion 

The averaged ROI RDMs and their 2D multidimensional 
scaling visualizations are shown in Figure 3. As 
expected, EVC shows a random pattern, LO depicts a 
clear animate/inanimate distinction, fusiform clusters 
face images strongly and PHC groups together scene 
images. 

 

Figure 4 shows the topographical correlation maps of 
the five convolutional layers of the hybrid-AlexNet 
model with the four fMRI ROIs. EVC shows a random 
topographical correlation map pattern in the first two 
layers. This is in line with previous studies showing 
earlier layers of network being significantly correlated 
with EVC. Our results further show topographically 
these low level features scattered over the image. LO 
shows a dispersed correlation map in the mid-level 
layers and becomes more and more centralized over 
the layers, depicting a mid to high-level representation 
transformation. Correlation maps with PHC show a 
background/surrounding organization in layers 1 to 4 
resulting into a scattered distributed representation in 
the very last layer. This shows while the peripheral units 
of the network have similar representation to PHC in the 
earlier and mid-level layers, in the last layer they 
capture more distributed zones in the image, more 
adapted to scene representations. Finally, correlation 
maps of fusiform and layers of the network 
demonstrates very strong center-selective patterns, 
consistent with the foveal-bias representations in 
fusiform area. 



 

Figure 4: Topographical correspondence between 
convolutional layers of deepnets and human ventral 
visual regions. Each row shows the correlation maps for 
each brain ROI (EVC, LO, PHC and Fusiform) and each 
column corresponds to a convolutional layer in the 
hybrid-AlexNet. 

Conclusion 

Previous studies have shown hierarchical and temporal 
correspondences between the regions in ventral visual 
pathway and layers of deepnets (Khaligh-Razavi et al., 
2014; Yamins et al., 2014; Cichy et al., 2016). In the 
current study, using RSA analysis, we showed a 
topographical correspondence between the brain 
regions and units of the network. Specifically, fovealy 
biased fusiform highly correlated with units of the 
network selective to the center of the visual field and 
peripherally biased PHC strongly correlated with units 
of the network selective to the background/surrounding 
of the image. The hierarchical, temporal and 
topographical correspondences between deepnets and 
visual cortex, further motivate the use of deepnets as 
relevant models of the visual ventral stream. 
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