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Abstract
To successfully interact with an everchanging world im-
bued with uncertainties, humans often have to learn prob-
abilistic state-action-reward contingencies. Reinforce-
ment learning algorithms have been able to provide a
mechanistic picture of the neurocomputational principles
that govern such learning and decision processes. How-
ever, standard reinforcement learning algorithms assume
that the environmental state is fully observable. Humans,
on the other hand, often have to learn the expected re-
ward of choice options under considerable perceptual
uncertainty. In this project we investigate the compu-
tational principles that govern probabilistic state-action-
reward learning under perceptual uncertainty. To this
end, we designed an integrated perceptual and economic
decision making learning task and acquired behavioural
data from 52 human participants. To interpret the partici-
pants’ choice data, we developed a set of artificial agents
which describe a range of cognitive-computational strate-
gies. These strategies range from Bayes-optimal ex-
ploitative decision making that takes perceptual uncer-
tainty parametrically into account to fully random choice
policies. Our behavioural modelling initiative favoured an
agent model that suggests that human participants inte-
grate their subjective perceptual uncertainty when learn-
ing probabilistic state-action-reward contingencies. They
tend, however, to underestimate the degree they should
do so from a normative Bayes-optimal perspective.
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Introduction
Humans often have to learn state-action-reward contingen-
cies under considerable perceptual uncertainty. For exam-
ple, when learning which varieties of wild berries are edi-
ble, perceptual uncertainty about the type of berry can sig-
nificantly degrade the correct credit assignment between an
experienced reward (such as an increase in blood glucose
level), an action (choosing to eat a type of berry), and the
environmental state (the type of berry). While standard re-
inforcement learning algorithms, such as Q-learning, have
provided a mechanistic picture of state-action-reward contin-
gency learning under full state-observability (Niv, 2009; Niv
and Langdon, 2016), it is less clear how such algorithms
can be adapted for cases imbued with perceptual uncertainty.
Here, we developed a novel computational framework that
uses neuroscience-inspired artificial agent models to provide
Bayes-optimal solutions to this problem and that can be tested

against human choice data. In the following, we first dis-
cuss the learning task developed to study state-action-reward
contingency learning in humans and artificial agents (”The
Gabor-bandit task”), then provide an overview about our com-
putational framework (”Task and agent models”), and finally
discuss the results of applying this framework to human be-
havioural data (”Experimental results”).

The Gabor-bandit task
The Gabor-bandit (GB) task is a novel state-action-reward
contingency learning task which combines aspects of per-
ceptual and economic decision making. Each trial of this
task comprises three stages (Figure 1). In the first stage,
two Gabor patches that differ in their contrasts are simulta-
neously presented to the left and right of a central fixation
cross and participants are asked to judge the relative Gabor
patch contrasts. Participants report their perceptual judge-
ment (higher/lower contrast on the left or right?) using the left
and right cursor buttons of a computer keyboard. In the sec-
ond stage of each trial, two clearly distinguishable, vertically
aligned red and blue fractals are displayed and participants
are asked to indicate the fractal which they think is associated
with the higher reward probability given the relative locations
of the high- and low-contrast Gabor patches. Participants indi-
cate their fractal choice using the up and down cursor buttons
on a computer keyboard. Finally, a reward of zero or one point
is presented in the third stage of a task trial.

Figure 1: GB task trial structure. The GB task is a novel state-
action-reward contingency learning paradigm that combines
aspects of perceptual and economic decision making. Partic-
ipants have to learn state-dependent (Stage 1) associations
between actions (Stage 2) and experienced rewards (Stage
3) over a block of 25 trials. A single trial of the task is depicted
in the figure.



The central feature of the GB task is the dependency of the
fractal choice option reward probabilities on the relative dis-
play location of the high-contrast Gabor patch, which is ran-
domly assigned on each trial with equal probabilities for left
and right. For example, if on a given trial the high-contrast
Gabor patch is displayed on the left side, then the blue frac-
tal choice option is associated with a higher reward probabil-
ity than the red fractal choice option. In contrast, if the high-
contrast Gabor patch is displayed on the right side, then the
blue fractal choice option is associated with a lower reward
probability than the red fractal choice option.

Crucially, on each block of the GB task, which comprises
25 trials of the type shown in Figure 1, this stimulus-action-
reward contingency is unknown to the participant and has to
be relearned in order to maximize cumulative rewards. Fur-
thermore, the Gabor patch contrast differences are manip-
ulated on a trial-by-trial basis to induce variable amounts of
perceptual uncertainty about the current location of the high-
contrast Gabor patch. For each trial, the contrast difference
between the two Gabor patches is drawn from a uniform dis-
tribution of subtle contrast differences extending over an in-
terval of -0.08 (higher contrast on the left-hand side) to 0.08
(higher contrast on the right-hand side) Michelson contrast. In
effect, over the course of each task block, participants face
a credit-assignment problem regarding the contingency of the
high-contrast Gabor patch location, the fractal choice options,
and the received rewards.

Experimental procedures To assess human behaviour on
the GB task, 54 participants were recruited from the local par-
ticipant pool of Freie Universität Berlin and provided informed
consent before partaking in the study. The data of two par-
ticipants were excluded from all analyses due to a malfunc-
tion of the data acquisition set-up. The effective study sam-
ple thus consisted of 52 participants. All participants com-
pleted 12 blocks of 25 trials of the Gabor bandit task. On each
task block, the state-action-reward contingency had to be re-
learned.

Task and agent models
Task model. To render the GB task amenable to compu-
tational modelling, we first formulated a mathematical model
of the task. In our documentation of this model, we follow
the conventions of machine learning literature on probabilistic
models, i.e., we do not explicitly distinguish between proba-
bility distributions, probability density functions, or probability
mass functions. We model a block of the GB task by the tuple(

T,S,C,R,A, pφ(st), pκ(ct |st), pat ,µ(rt |st)
)
, (1)

where

• T := 25 denotes the number of trials per block, which are
indexed as t = 1,2, ...,T ,

• S := {0,1} is the set of task states governing the action-
reward contingencies of the task,

𝑝 𝑠𝑡 ≔ 0.5

Trials 𝑡 = 1,2, … , 25

𝑠𝑡 = 0 𝑠𝑡 = 1
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Figure 2: GB task model. Note that from the perspective of the
task, the state-action-reward contingency parameter is a non-
random entity and that the participants’ and agents’ percep-
tual decisions have no direct consequences for the observed
rewards.

• C := [−κ,κ] with κ := 0.08 is the set of Gabor patch con-
trast differences,

• R := {0,1} is the set of rewards,

• A := {0,1} is the set of economic decisions, where 0 and 1
represent the selection of the red and blue fractals, respec-
tively,

• pφ(st) := B(st ;φ) is the Bernoulli state distribution with pa-
rameter φ := 0.5,

• pκ(ct |st) is the state-conditional contrast difference uniform
distribution defined by

pκ(ct |st) :=U(ct ; [−κ,0])1−stU(ct ; ]0,κ])st , (2)

• and pat ,µ(rt |st) is the action- and parameter-dependent and
state-conditional reward distribution which represents the
true state-action-reward contingencies of the GB task. This
distribution is defined as

pat ,µ(rt |st) :=(
B(rt ;µ)1−st B(rt ;1−µ)st

)1−at
(

B(rt ;1−µ)1−st B(rt ;µ)st
)at

(3)

with contingency parameter µ := 0.8.

As visualized in Figure 2, on each trial, the task (1) samples a
state st according to p(st), (2) records a perceptual decision
dt , (3) samples and displays a contrast difference ct accord-
ing to pκ(ct |st), (4) records an economic decision at , and (5)
samples and displays a reward according to pµ,at (rt |st).



Agent models. To formalize the putative cognitive pro-
cesses of human participants interacting with the GB task, we
next developed a set of four neuroscience-inspired agent mod-
els. These agents are of similar overall structure, but differ
in their precise state-inference and sequential-learning algo-
rithms. All agent models are represented by a tuple

(
T,M,S,C,D,A,R, p(µ), pφ(st), pκ(ct |st), pσ2

(ot |ct), pat (rt |st ,µ)
)
,

(4)
where

• T,S,C,A,R, pφ(st), pκ(ct |st), pat (rt |st ,µ) are as for the task
model, with the difference that µ assumes the status of a
random variable,

• M := [0,1] is the outcome space of this random variable,
which represents the agent’s uncertainty about the state-
action-reward contingency parameter on a given task block,

• O ∈ R is a set of internal agent observations ot that are
assumed to result from the external Gabor patch contrast
difference ct under additive perceptual noise,

• D := {0,1} is a set of perceptual decisions, where 0 de-
notes the perceptual decision indicating that the contrast
on the left is larger than on the right, and 1 the opposite,

• p(µ) is the agent’s task block-specific initial uncertainty
about µ, which corresponds to a uniform distribution over
M, and

• pσ2
(ot |ct) is the agent’s observation likelihood, which we

defined by the conditional normal distribution

pσ2
(ot |ct) := N(ot ;ct ,σ

2), (5)

where σ2 > 0 is a perceptual sensitivity parameter.

Crucially, the probability distributions of the agent tuple in-
duce a joint probability distribution, which allows for analyti-
cally evaluating an agents’ observation-conditional state distri-
bution (modelling human perception) and defining a recursive
scheme for the sequential updating of the agents’ uncertainty
representation about the state-action-reward contingency pa-
rameter (modelling human learning and memory). Further-
more, this joint distribution allows for defining perceptual and
economic decision policies (modelling human decision mak-
ing). We next elaborate on these aspects for the four agent
models that constitute our model space.

Agent A1 is a Bayes-normative exploitative model: on each
trial of a task block, agent A1 makes the economic deci-
sion that maximizes its expected reward given its current
knowledge about the state-action-reward contingency param-
eter. To achieve a Bayes-optimal estimation of this parameter,
agent A1 sequentially updates its uncertainty about it, by first
inferring on its observation-conditional state distribution (belief
state) according to

πs :=
∫

pσ2,κ(st ,ct |ot)dct

=

(
Φ(0;ot ,σ

2)−Φ(−κ;ot ,σ
2)
)1−st

(
Φ(κ;ot ,σ

2)−Φ(0;ot ,σ
2)
)st

Φ(−κ;ot ,σ2)−Φ(κ;ot ,σ2)
,

(6)

where Φ denotes the Gaussian cumulative density function
and makes its perceptual decisions in accordance with its be-
lief state on each task trial, i.e., it sets

p(dt = 0|ot) := π0 and p(dt = 1|ot) := π1. (7)

The agent then integrates this trial-wise belief state in a se-
quential Bayesian updating scheme for its uncertainty about µ.
This scheme shares some similarities with standard sequen-
tial Beta-Bernoulli Bayesian learning, but instead of a Beta
distribution employs probability density functions that are de-
fined in terms of increasing order polynomials in µ. These
polynomials are of the general form

p(µ|r1:t ,a1:t) :=
t

∑
k=0

ρt,kµt−k, (8)

where the polynomial coefficients ρt,k,k = 0, ..., t can be eval-
uated, for each t = 1, ...,T , in closed form based on the co-
efficients ρt−1,k,k = 0,1, ..., t−1 and the agent’s trial-specific
belief state (see Djuric and Huang (2000) for similar work). Fi-
nally, agent A1 makes its economic decision by choosing that
action a∗t for which

a∗t = argmax
A

Epat (rt |o1:t ,r1:t−1)(rt), (9)

i.e., it chooses that fractal which promises the highest ex-
pected reward on a given trial upon integrating over its current
uncertainty about µ.

Agent A2 is a behavioural model, which is of similar nature as
agent A1, but instead of using the normative belief state (6)
for learning and economic decision making defines its trial-
by-trial belief state categorically according to a participant’s
perceptual decision. That is, if dt denotes the perceptual de-
cision of a participant on a given trial, agent A2 encodes the
belief state

π0 :=

{
0 (dt = 1)
1 (dt = 0)

, π1 :=

{
1 (dt = 1)
0 (dt = 0)

(10)

Intuitively, agent A2 thus foregoes a parametric encoding
of Bayes-normative state uncertainty when evaluating its
state-action-reward contingency and economic choice options
based on (8) and (9), respectively.

Agent A3 is a behavioural model that results from a mixture
of the A1 and A2 learning and decision making architectures.
Specifically, for its trial-wise uncertainty about µ, agent A3
forms the convex combination

pA3(µ|r1:t ,a1:t) := λpA1(µ|r1:t ,a1:t)+(1−λ)pA2(µ|r1:t ,a1:t),
(11)



where λ ∈ [0,1], and, similarly, for its economic decision eval-
uates

Epat
A3(rt |o1:t ,r1:t−1)

(rt)

:= λEpat
A1(rt |o1:t ,r1:t−1)

(rt)+(1−λ)Epat
A2(rt |o1:t ,r1:t−1)

(rt).
(12)

Agent A0, finally, is a random-choice control model that es-
chews any task state inference and state-action-reward con-
tingency parameter representations. It merely makes percep-
tual and economic decisions uniformly at random.

Parameter estimation and model evaluation To evaluate
agent models A0 to A3 in light of the experimentally acquired
human behavioural data, we used a combination of maximum-
likelihood estimation and Bayesian-information criterion (BIC)-
based model evaluation. Specifically, for each agent model
and participant, we first integrated over the agent’s internal ob-
servation space, then maximized the log probability of the par-
ticipant’s choices using a softmax choice rule, computed the
participant- and model-specific BIC scores, and finally eval-
uated the model-specific group BIC scores using a random-
effects Bayesian model selection procedure (Rigoux et al.,
2014).

Experimental results

Figure 3 depicts the results of our behavioural modelling ini-
tiative. As a measure of the agent models’ face validity,
we first compared the average cumulative rewards achieved
by human participants and simulated task-agent interactions
(Figure 3A). To this end, a series of task-agent interactions
were simulated under identical conditions as in the experi-
mental study with human participants (e.g., number of GB
task blocks, trials, observed stimulus and reward frequencies,
estimated perceptual sensitivity and softmax function param-
eters). The average cumulative reward traces of Figure 3
indicate that the human participants were able to learn the
state-action-reward contingency, but, given the high percep-
tual state uncertainties on a subset of trials, did not achieve
the theoretically possible expected reward of 0.8. Moreover,
the human participants performed slightly worse than the
Bayes-optimal exploitative agent model A1 and slightly better
than the heuristic behavioural agent model A2, such that the
convex combination of agents A1 and A2 as implemented in
A3 achieves the highest performance correspondence. Natu-
rally, the random choice model A0 performs at chance levels.

To formally compare the agent models in light of the partic-
ipants’ choice data, we evaluated the cumulative BIC scores
over participants for each agent model (Σ BIC) (Figure 3B).
These indicate that model A3 indeed explains the behavioural
data best, followed by agent models A1 and A2. Moreover,
assessing model plausibility using a random-effects Bayesian
model selection procedure confirms this result by allocating a
protected model exceedance probability (pEP) of larger than
0.99 to model A3 (Figure 3C).

Figure 3: Experimental results. (A). Average cumulative re-
wards of human participants and agent model simulations.
The grey error bars depict the SEM of the human participant
data. (B). Cumulative BIC scores for each agent model over
participants. (C). Model exceedance probabilities.

Conclusion
In summary, in the current project we investigate the computa-
tional mechanisms of state-action-reward contingency learn-
ing under perceptual uncertainty. We developed a novel ex-
perimental and computational framework that allows for for-
mally evaluating different mechanistic theories on how such
learning is algorithmically realized. This framework goes be-
yond standard reinforcement learning algorithms by explicitly
accounting for various uncertainties in a probabilistic man-
ner. Experimentally, we found evidence that human partici-
pants may capitalize on the cognitive-computational mecha-
nisms proposed here, and exhibit a mixture of Bayes-optimal
and heuristic decision making and learning.
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