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Abstract
In this study, we present a two-component neural net-
work model that describes how cortex and hippocam-
pus jointly process event sequences. Cortex is mod-
eled as a recurrent neural network, whose behavior is
governed by actively maintained parameters specifying
features of the current event. Hippocampus can take
“snapshots” of sets of actively maintained parameters
and then retrieve these parameter sets in response to par-
tial cues. With functional alignment methods, we qualita-
tively captured patterns of inter-subject correlation (ISC)
from a recent human neuroimaging study. Specifically,
we observed enhanced ISC when hippocampus retrieved
stored parameters relating to the current event and fed
these into the cortex. These results support our formal-
ization of how hippocampus and cortex collaboratively
process events, and provide a proof-of-concept demon-
stration of our computational modeling framework for
group-level “brain coupling” phenomena.
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Introduction
Although the hippocampus is critical for episodic retrieval, the
processing of coherent natural dynamic stimuli can be done
(to some degree) in the absence of a functioning hippocam-
pus. For example, it is known that patients with hippocampal
damage can carry on a coherent conversation (Duff, Hengst,
Tranel, & Cohen, 2006; Milner, Corkin, & Teuber, 1968; Scov-
ille & Milner, 1957). We hypothesize that this occurs because
cortex can actively maintain key parameters of the current
event (the “event model”; Radvansky and Zacks, 2011) on its
own. These parameters, in conjunction with learned weights,
allow cortex to predict upcoming states of the world (e.g., ac-
tively maintaining that Bob is the barista, coupled with learned
weights encoding how baristas usually act, is enough to pre-
dict how Bob will act). This system works so long as there
are no interruptions that disrupt storage of actively maintained
parameters. If an interruption occurs, hippocampus is needed
to retrieve these parameters from long-term storage.

A recent experiment simulated this phenomenon with nor-
mal human subjects (J. Chen et al., 2016). In the study, three
different groups of participants watched a movie, divided into
two parts. The Recent Memory (RM) group watched the two
parts without any interruption; the Distant Memory (DM) group
watched the two parts with a one-day gap in between; the No
Memory (NM) group watched the second part of the movie
only. The NM group mimics the experience of hippocam-
pal patients. The one-day gap in the DM simulates an inter-

ruption, which is known to be disruptive for hippocampal pa-
tients. Empirically, stronger hippocampal-cortical interactions
were observed among participants in the DM group, suggest-
ing stronger episodic reinstatement compared to other groups
(J. Chen et al., 2016). We hypothesize that this occurred be-
cause i) the one-day gap cleared out the parameter buffer, and
ii) in this situation, hippocampus was called upon to retrieve
missing parameters once the movie resumed.

In the present study, we propose i) a computational formal-
ization of the functions of hippocampus and the cortex during
event processing and episodic retrieval; ii) a method of mod-
eling inter-subject correlation (Hasson, Malach, & Heeger,
2010). We qualitatively captured several findings. For exam-
ple, during the processing of the second half of the movie, the
DM-RM inter-group ISC gradually converged with the RM-RM
inter-group ISC, suggesting that the interpretation of ongoing
events in the DM group gradually converged with the interpre-
tation of these events in the RM group (J. Chen et al., 2016).

Model

In this section, we state the high-level formalization of the
functions of the cortex and hippocampus during event pro-
cessing. Then we describe the structure of the stimulus envi-
ronment and the inner workings of the model in more detail.

Model overview

The cortex is implemented by a standard long short-term
memory (LSTM) network (Hochreiter & Schmidhuber, 1997)
with noisy neurons. The LSTM layer receives information from
two layers: 1) a representation of the current (observable)
state, and 2) a buffer that actively maintains the values of pa-
rameters that specify features of the current situation (for ex-
pediency, the buffer is set up with intrinsic active maintenance,
such that units maintain their activity levels unless directly re-
set to a new value). As described below, the environment is
set up such that the mapping between the current state and
the next state is dependent on the parameters stored in the
buffer (i.e., you need to know certain parameter values to pre-
dict certain state transitions; for example, you need to know
whether a coffee shop accepts cash to predict what will hap-
pen if you try to pay in cash). In the current (early-stage) ver-
sion of the model, the hippocampus is not modeled explicitly
– rather, it is simulated by allowing the network to ”fill in” the
full set of parameters for a given event if it has previously been
exposed to these parameters (future versions of the model will
simulate the hippocampal network directly).



Figure 1: A) The model architecture. The cortex is modeled as an standard LSTM. Parameters specifying properties of the
current event are actively maintained in the buffer, which feeds into the LSTM layer. Hippocampus is not directly simulated as a
neural network; rather, hippocampal retrieval is simulated by filling in missing parameter values in the buffer. The model is trained
to predict the next state. B) A shortened event graph with length T = 4 and branching factor K = 3. Stk denotes the kth event
at time t. We used T = 30 and K = 3 for our simulation. C) Next state prediction accuracy during the second event sequence.
The gap length (for the DM group) is the number of noise vectors fed to the network between the two event sequences. We
chose length 64 for the ISC analysis. D) Inter-group sliding-window inter-subject correlation (ISC). Initially, the RM group is more
correlated with other members of that group than with the DM group or the NM group. When hippocampal retrieval occurs for
the DM group (at time 5), this pulls the DM group closer to the RM group. The ISC value at time t is computed using the hidden
states from time t to t +10. E) Within-group ISC for the entire time course (the second event sequence). *Error bars/bands for
all plots are 99% bootstrapped confidence intervals with 10,000 bootstrapped samples.

Stimulus representation
The model is trained on synthetic event sequences, gener-
ated by a graph (Figure 1A). The graph has T layers of nodes,
where T is the length of the event sequence. Each node, rep-
resenting an event, has K branches, which represent K pos-
sible next events. All nodes have the same branching factor.
To obtain graphs with inhomogeneous branching factors, we
can set the probability of some branches to zero, so we think
the graph is sufficiently general. In our simulation, we chose
T = 30 and K = 3.

To simulate the parameter-dependence of event structure,
the transition probabilities out of each layer t in the graph are
controlled by a event parameter, pt , which can take K possible
values; each of these K values specifies a unique successor
state Stk. For example, if p4 = 1, then S41 will happen at t = 4;
if p4 = 2 then S42 will happen at t = 4. Concretely, p4 might

represents the event parameter “weather”, which can take any
value from {“sunny”, “windy”, ..., “rainy”}. Then p4 = 1 repre-
sents “weather” is “sunny” which leads to successor state S41
(e.g., putting on sunscreen). The upshot of this scheme is that
transitions are completely deterministic, conditioned on know-
ing the right parameter values. If the model does not know the
parameter value that controls a particular transition, it can not
predict which of the K successor states will occur next.

At time t, the model is allowed to observe the current state
(i.e., where it is on the graph). The model is also informed
about a new, randomly chosen parameter value at each time
step (sampling without replacement from the set of parame-
ters); this act of parameter observation is simulated by acti-
vating the units corresponding to that parameter value in the
buffer. Note that the parameter that is revealed on a particular
time step may not be relevant on that time step. For example,



on time step 2, the model might learn that p4 = 1 (“weather” is
“Sunny”), but that particular fact is not relevant until time step
4. Because the sequence of parameter values is revealed in a
random order, the probability of observing or having observed
the “right” parameter value at time t is t/T . This mimics the
fact that in reality, we typically do not know all the relevant
information to make the correct prediction.

In addition to observing parameter values, the model is also
able to retrieve stored sets of parameter values from the hip-
pocampus; as noted above, this is not directly simulated in the
initial version of the model – rather, we simply reinstate these
parameter values at moments when we deem hippocampal
retrieval to have taken place. We refer to the fullly-specified
set of parameter values as an “episode”.

We simulated the two parts of a movie (J. Chen et al., 2016)
by generating two random sequences using the same set of
parameter values, which ensures the transition structure in the
second event sequence is consistent with the episode learned
from in the first sequence. This design choice implicitly as-
sumes that two parts of the movie are consistent (i.e., the
world is relatively stationary over time).

Experiment conditions
To simulate the three experiment conditions in the fMRI exper-
iment (J. Chen et al., 2016), we experimentally controlled the
action of the hippocampus for all time steps. During the sec-
ond half of the movie, since the Recent Memory (RM) group
was not interrupted, they should have access to almost all
relevant event parameters. Therefore, we revealed all true
parameter values for all time steps to the models in the RM
group. For the No Memory (NM) group, the values of the event
parameters need to be discovered as the event unfolds. Since
the model observes parameter values in a random order, it is
often the case that NM models have not yet learned the pa-
rameter required to predict the next state. The Distant Mem-
ory (DM) group has stored an episodic memory pertaining to
the ongoing event. Initially, the experience of the DM group
is similar to NM. We simulated episodic retrieval by activating
all of the true parameters in the buffer on the 5th time point.
We simulated the one-day gap in the DM condition by feed-
ing a sequence of noise patterns in between the two event
sequences to corrupt the cortical representation.

Training and testing
We trained 30 networks on 5000 training examples (from
330 × 30! possibilities). Each example contains two subse-
quences (length T ) with identical event parameter values. The
model’s training experience was meant to capture all three
conditions: During the first half of each training example, the
model started with an empty buffer and the parameters were
revealed over time (as in NM); during the latter half of each
training example, the model was given a chance to learn with
all parameters specified (as in RM and also DM, after episodic
retrieval occurred). To ensure the model had experience be-
ing interrupted, we inserted a random length noise sequence
between the two subsequences. The training sets for different

models were generated independently, so different models do
not share identical experience, though the generative model
for the world is consistent across individuals.

All networks were tested on the same held-out set, which
can be viewed as the “movie” in the fMRI experiment (J. Chen
et al., 2016). We assigned 10 models to each condition.

Results
Behavior results: “stop-and-ask”
The next state prediction performance during the second
event sequence is shown in Figure 1C. This task is similar the
stop-and-ask experiment for humans (J. Chen et al., 2016).
For the RM condition, since all parameter values were re-
vealed in the buffer and the cortex contains information from
the first event sequence, the prediction performance among
subjects in the RM condition is optimal from the very begin-
ning. The models in the NM condition need to learn the true
event parameter values as the event sequence unfolds, so ac-
curacy linearly increases from the chance level to the optimal
level. For the DM group, the prediction performance peaks
when these networks retrieves the episode at t = 5.

For the DM group, initial performance in the second se-
quence depends on the length of the one-day gap, opera-
tionalized as the number of noise vectors inserted between
the sequences (Figure 1C). A short noise sequence (e.g.,
length = 8) had minimal impact on the information maintained
in the cortex. For the ISC analysis, we chose length 64 noise,
which is sufficient to corrupt all information in the cortex.

Neuroimaging results: inter-subject correlation
Typically, inter-subject correlation (ISC) is computed by taking
the fMRI timecourse from a particular brain area in each sub-
ject and correlating these timecourses; here, we computed
ISC based on the hidden representation in the LSTM (Fig-
ure 1D) – see ”analysis detail” below. The resulting pattern is
qualitatively similar to the empirical fMRI result (see Figure 6
by J. Chen et al., 2016). During the “second half of the movie”
in the simulation, the ISC between the two subgroups of the
RM group (or RM-RM ISC for short) was the highest for all
time windows. The RM-DM ISC started out lower than the
RM-RM ISC but converged after the “movie” began. Overall,
the RM-DM ISC was higher than the RM-NM ISC. These re-
sults indicate that the DM group’s representation of the event
sequence gradually converged with the RM group’s represen-
tation as the event sequence unfolded.

ISC analysis detail The analysis procedure is designed to
closely mimic the human fMRI data analysis pipeline (J. Chen
et al., 2016). The procedure involves an hyperalignment step
(P.-H. Chen et al., 2015; Haxby et al., 2011) followed by a
sliding window ISC. We first functionally aligned the hidden
representation across networks using the shared response
model (SRM) (P.-H. Chen et al., 2015) – a generalization of
hyperalignment. Hyperalignment is necessary for comparing
hidden unit activities across networks, since the representa-
tional geometry of a trained neural network might be arbitrar-



ily oriented relative to hidden unit activity space. Conceptu-
ally, SRM factorizes the time course matrix for each model
as a subject-specific transformation and a lower dimensional
shared time course. We have previously shown that SRM is
an effective method for functionally aligning neural networks
(Lu, Ramadge, Norman, & Hasson, 2018). We fitted SRM on
the training set, then we used the learned SRM to transform
the held-out neural activities.

In the second step, we analyzed these functionally-aligned
held-out activities with ISC (J. Chen et al., 2016; Hasson et
al., 2010). For sliding-window ISC (In Figure 1D), at time t,
given two groups of subjects, we extract their hidden units’
time courses from time t to time t+10, and compute the Pear-
son correlation between these two time courses. Repeating
this procedure for all time steps traces out a curve that in-
dicates the degree of similarity of internal representations be-
tween groups. For the inter-group ISC analysis, we first evenly
divided the 10 subjects in each condition into two subgroups.
For example, the 10 RM subjects were divided into two sub-
groups of five subjects, RM1 and RM2. Then we computed
the sliding-window ISC between RM1 and RM2 (blue), RM1
and DM2 (purple), RM1 and NM2 (orange) (Figure 1D).

Finally, we did within-group ISC for the entire time course
(for the second subsequence) (Figure 1E). We found that RM-
RM ISC is the highest, followed by DM-DM ISC and finally
NM-NM ISC. This pattern reflects the ordering of the over-
all uncertainty level across the three conditions. Uncertainty
arises whenever the relevant parameter value has not been
observed, because the empirical distribution over all possible
next states is uniform. The models in the NM group had the
highest degree of uncertainty, which made them more sensi-
tive to noise, so the use of noisy neurons had the larger impact
on NM models, relative to other two conditions. Consequently,
the ISC of the internal representation across subjects within
the NM group was the weakest.

Conclusion and future directions

With a simple neural network model, we formalized how the
cortex and hippocampus jointly process event sequences. Al-
though the cortex can predict event sequences by actively
maintaining parameters of the current event (which serve to
disambiguate the network’s predictions), any interruption can
corrupt this actively-maintained information. Hippocampus
can recover the information by reinstating a previously stored
episode, which contains a list of event parameters. With func-
tional alignment, we were able to qualitatively capture some
group-level brain-coupling patterns from a recent fMRI study
(J. Chen et al., 2016): When the delayed-memory networks
retrieved memories, making their buffer content more similar
to the recent-memory group, we observed enhanced inter-
group ISC. These results validate our model formalization
and provide a proof-of-concept demonstration of our compu-
tational framework for further ISC modeling.

The present study is our initial attempt to understand
cortical-hippocampal interaction during naturalistic event pro-

cessing. In the future, we plan build a more detailed hip-
pocampal model to study the computational principles of
episodic retrieval and cortical-hippocampal interaction. For
the training environment, we plan to explore richer event
transition structure, more realistic parameter-dependency and
naturalistic event schemas.
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