
Generalized Schema Learning by Neural Networks

Catherine Chen (cathy.chen@princeton.edu)?

Qihong Lu (qihong.lu@princeton.edu)†

Andre Beukers (abeukers@princeton.edu)†

Chris Baldassano (chrisb@princeton.edu)†

Kenneth Norman (knorman@princeton.edu)†

∗Princeton Computer Science Department, Princeton NJ 08540
†Princeton Neuroscience Institute and Princeton Psychology Department, Princeton NJ 08540

Abstract
Humans have schematic knowledge of how certain

types of events unfold (e.g., restaurant meals) that can
readily be generalized to new instances of those events.
Here, we test whether neural networks can do this kind
of generalized schema learning. We stochastically gen-
erate stories according to predefined rules and test net-
works’ ability to answer questions about role fillers (e.g.,
who is the waiter). We find that networks trained on a
small set of fillers can only generalize to stories using the
same fillers. By training on a large number of fillers repre-
sented by random vectors, we allow networks to general-
ize to fillers they have never seen before. We find qualita-
tive differences in learning ability between networks with
different forms of memory, with some networks learning
fewer categories of tasks than others. We further find dis-
tinct influences of task difficulty on learning order, and of
training order on learning ability.

Keywords: neural networks; schema; generalization

Introduction
Humans acquire schematic knowledge about the structure

of particular types of events (e.g., restaurant meals), which
we can readily apply to new instances of those events (e.g.,
we may have never seen this particular waiter, but we can
still predict how they will act) (Bower, Black, & Turner, 1979)
A combination of long- and short-term memory enables this:
long-term memory stores schemas created over many expe-
riences, and short-term memory tracks information about the
current schema instance.

Recurrent neural networks (RNNs) are a class of neural
network architectures with weights that form directed cycles,
forming feedback loops that allow the networks to maintain
an internal state. These feedback loops allow the networks
to maintain both long-term (through the standard weight up-
dates of a neural network) and short-term (through the infor-
mation stored in the internal state) memory. These networks
have shown success on a wide range of tasks such as speech
recognition (Graves, Mohamed, & Hinton, 2013) and language
modeling (Mikolov & Zweig, 2012). In this work we examine
their ability to acquire generalized event knowledge, by expos-

ing the networks to procedurally-generated stories and testing
them on their ability to answer questions about role fillers from
the just-presented story. Prior work has shown that neural
networks can do this when they are explicitly told what filler
information to maintain (St. John & McClelland, 1990); here,
we are particularly interested in whether networks can learn
to maintain filler information on their own, and whether they
can generalize to new fillers that they have not seen before.

Methods
We construct stories using Coffee Shop World, a genera-

tor that writes stories based on predefined rules. Coffee Shop
World models stories as a graph in which nodes represent
states of the story and edge weights represent transition prob-
abilities between different states. Each state is a frame that
includes fixed text and variable “roles”, which are substituted
with specific “fillers” in each instance of the story. For instance,
an “Order food” state might read:

[Subject] ordered a plate of [Food]

and in a specific instance of the story [Subject] and [Food]
would be substituted with specific fillers, such as “Alice” and
“sandwiches”. Given a schema that defines states, transitions
between them, and possible fillers for each role in the story,
Coffee Shop World probabilistically generates stories that in-
stantiate the schema.

We test networks’ ability to perform role-filler binding, the
task of associating abstract roles with concrete fillers. Given
an input containing a story and a query specifying a role, the
networks must return the corresponding filler. For instance,
given the input

Alice ordered a plate of sandwiches ? QSubject

the network should return Alice.
In this experiment, we use the schema corresponding to

the story graph in Figure 1 and the state definitions in Ta-
ble 1. This schema contains six roles which correspond to
the tasks QDessert, QDrink, QEmcee, QPoet, and QSubject
(where “QX ” denotes the task of identifying the filler corre-
sponding to role X ). Note that the QSubject task is the easi-
est, as the Subject always occurs as the second word in the
story. Other roles do not always occur at a fixed location; for



instance, the most consistent appearance of the Friend (in the
“Sit down” state) has three possible locations. The QDessert
and QEmcee tasks are the hardest: the Dessert and Emcee
do not occur in every story, and they do not have a fixed loca-
tion even when they do occur in a story.

Figure 1: Story graph for role-filler binding experiments. Each
edge indicates a possible transition. In our schema, for states
with multiple outgoing transitions, each outgoing transition is
equally likely.

State Name State Frame
BEGIN BEGIN [Subject]
Order drink Order drink [Subject] [Drink]
Too expensive Too expensive [Subject]
Sit down Sit down [Subject] [Friend]
Emcee intro Emcee intro [Emcee] [Poet]
Poet performs Poet performs [Poet]
Subject declines Subject declines [Subject]
Subject performs Subject performs [Subject] [Friend]
Say goodbye Say goodbye [Subject] [Friend]
Order dessert Order dessert [Subject] [Dessert]
END END [Subject]

Table 1: Story states for role-filler binding experiments. We
provide the text of each state of the story, where the bracketed
roles are substituted by specific fillers in each story.

We show tests with four neural network architectures with
distinct forms of memory: a standard recurrent neural network
(RNN), Long Short-Term Memory (LSTM) (an RNN with gates
to control what the internal state stores, forgets, and displays
to the rest of the network) (Hochreiter & Schmidhuber, 1997),
Fast Weights (an RNN with a matrix of quickly changing “fast
weights” that enable auto-associative memory) (J. Ba, Hinton,
Mnih, Leibo, & Ionescu, 2016), and Differential Neural Com-
puter (an RNN with an LSTM “controller” that learns to read
to and write from an external buffer) (Graves et al., 2016). We
use layer normalization for the RNN, LSTM, and Fast Weights
architectures. This re-centers and re-scales the networks’ lay-
ers and serves to stabilize the network dynamics (J. L. Ba,
Kiros, & Hinton, 2016).

We represent each word of the story as a vector (using
either one-hot or random Gaussian vectors for each experi-
ment). At each time step we present one word to the network.
After presenting all words in the input we determine the net-
work’s prediction by finding the word vector in the experiment’s
corpus with the closest cosine similarity to the network’s out-
put.

Results
Previously Seen Fillers

When networks are trained and tested on stories with fillers
chosen from the same finite pool, networks can perform role-
filler binding, as we show in Figure 2 for random embeddings.

Figure 2: Role-filler binding succeeds with previously seen
fillers. Networks learn to recall the filler fulfilling a specified
role when the fillers used in stories are shared between the
train and test sets.

Previously Unseen Fillers
If we train networks on stories with a small set of fillers,

networks cannot generalize to previously unseen fillers, as we
show in Figure 3 for random embeddings. For instance, if a
network has never been trained on stories with the fillers Chris
or tacos and is tested on the story

Chris ordered a plate of tacos ? QSubject

then it fails to retrieve the correct output, even when it has
seen stories with the same frame during training. This hap-
pens even in experiments in which each input contains the
query QSubject, and networks could simply learn to always
return the second word of the story. In contrast, humans easily
generalize to previously unseen fillers, successfully answering
the input

Clkwef ordered a plate of talsk ? QSubject

even without ever having seen the words “Clkwef” or “talsk”.

Figure 3: Role-filler binding fails on previously unseen fillers
when the fillers in test set stories do not match those in train
set stories.

Previous work found that neural networks perform quite
poorly when the distribution of the training set differs from that
of the test set, which provides a possible explanation for the
lack of generalization to unseen fillers (The Alan Turing Insti-
tute, n.d.). We address this problem by continually introducing
new randomly generated fillers during training.



We designed a “variable random representation” training
regime, in which we generate a new random vector for each
input. For instance, the vector representing the word “Alice”
is newly generated in each example received by the network.
Under this regime, some networks successfully generalize to
previously unseen fillers during test, as we show in Figure 4a.
Note that using random vector representations allows the train
and test fillers to come from the same distribution.

The accuracies of DNC and Fast Weights display a salient
stepwise structure, and we show accuracies split by input
query in Figure 4b. Some networks only learn to solve the
easiest task (QSubject), while networks that learn to solve
multiple tasks first learn the easiest task before continuing to
learn more difficult tasks (such as QPoet or QEmcee).

(a) Overall accuracies (b) Accuracies split by query

Figure 4: Role-filler binding succeeds on previously unseen
fillers, using variable random fillers. When trained on stories
that continually introduce previously unseen fillers, networks
learn to generalize to previously unseen fillers. Task difficulty
influences networks’ ability to learn certain tasks and speed
of learning.

Curriculum Learning
In single-task experiments (where all inputs contain the

same task), the LSTM can learn the QSubject or QPoet task.
However, in multi-task experiments (where inputs can contain
different tasks), it only learns the QSubject task. Previous
research has found that curriculum learning can accelerate
learning (Bengio, Louradour, Collobert, & Weston, 2009). We
find that it can also allow the network to learn additional tasks.

We constructed a curriculum training regime in which the
LSTM first learns one task before being trained on both tasks.
If the LSTM is trained on the QPoet task first it can learn both
tasks, while if it is trained on the QSubject task first it only
learns QSubject task. We show test accuracies for both cur-
ricula in Figure 5.

Discussion
Training on a small set of fillers makes networks unable to

generalize beyond the fillers it has seen. Using random Gaus-
sian embeddings and providing a large number of fillers – a
new filler for each example – during training forces the net-
work to generalize beyond a small set of fillers, and allows
networks to successfully perform role-filler binding on previ-
ously unseen fillers.

Different forms of memory qualitatively affect performance:
networks differ not only in their speed of learning, but also

Figure 5: Order of learning affects success of role-filler
binding. We train networks on a curriculum containing two
regimes. In the first regime they receive only examples with
a single query, and in the second regime they receive exam-
ples containing both queries. First training the network on the
harder task allows the network to learn both tasks, while start-
ing with the easier task blocks the network from learning the
harder task.

in the tasks they are able to learn. When trained on inputs
consisting of six queries, Fast Weights and DNC (biologi-
cally inspired by the existence of synaptic learning at differ-
ent timescales and complementary learning systems) learn to
answer multiple tasks where LSTM and RNN learn to answer
only a single task. The single task learned by LSTM and RNN
(QSubject) is the easiest task, and is also the task that Fast
Weights and DNC learn first.

Saxe et al (Saxe, McClelland, & Ganguli, 2013) provide a
possible explanation for this phenomena of stepwise accura-
cies. They show that a three-layer linear network given orthog-
onal input representations learns stronger input-output corre-
lations more quickly, where singular values of the input-output
correlation matrix denote input-output correlation strength.
The different timescales of learning different tasks could ex-
plain the appearance of staggered characteristic learning
curves in the split accuracy plots in Figure 4b.

Furthermore, the order of learning can affect networks’
learning ability. First training the LSTM on the easier task or
training on both tasks simultaneously causes the network to
only learn the easier task. Perhaps the network latches onto
a simpler method of solving the task, one which allows it to
solve QSubject but not QPoet. First training the network on
QPoet may force the network to find a more useful approach
to role-filler binding, one which allows it to learn both tasks.

Our analysis of specific incorrect predictions shows pat-
terns in networks’ errors. While the standard RNN did not
show patterns in networks’ errors, the vast majority of the
LSTM’s mistakes occur when the network predicts the story’s
Subject rather than the filler requested by the query. In the
Fast Weights architecture, errors also occur from providing the
correct answer to the wrong query. Fast Weights’ errors come
from its incorrect prediction of a story’s Emcee instead of its
Dessert and vice versa. This suggests that these errors may
come from failing to identify which task to perform (correctly
answering queries in our experiments requires the network to
learn to both (a) identify the task and (b) carry out the task).

Future work will analyze these architectures’ use of mem-
ory using techniques akin to neuroimaging to better under-



stand how they perform schema learning, and why they some-
times fail.

Acknowledgments

Funding was provided by a grant from Intel Labs and by a
Multi-University Research Initiative grant to KAN (ONR/DoD
N00014-17-1-2961). Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
Office of Naval Research or the U.S. Department of Defense.

References
Ba, J., Hinton, G., Mnih, V., Leibo, J. Z., & Ionescu, C.

(2016, October). Using Fast Weights to Attend to the Re-
cent Past. arXiv:1610.06258 [cs, stat] . Retrieved 2018-01-
30, from http://arxiv.org/abs/1610.06258 (arXiv:
1610.06258)

Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016, July). Layer Nor-
malization. arXiv:1607.06450 [cs, stat] . Retrieved 2018-02-
02, from http://arxiv.org/abs/1607.06450 (arXiv:
1607.06450)

Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009).
Curriculum Learning. In Proceedings of the 26th Annual In-
ternational Conference on Machine Learning (pp. 41–48).
New York, NY, USA: ACM. Retrieved 2018-04-26, from
http://doi.acm.org/10.1145/1553374.1553380 doi:
10.1145/1553374.1553380

Bower, G. H., Black, J. B., & Turner, T. J. (1979). Scripts in
memory for text. Cognitive psychology , 11(2), 177–220.

Graves, A., Mohamed, A. r., & Hinton, G. (2013, May).
Speech recognition with deep recurrent neural networks.
In 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing (pp. 6645–6649). doi:
10.1109/ICASSP.2013.6638947

Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka,
I., Grabska-Barwiska, A., . . . Hassabis, D. (2016, October).
Hybrid computing using a neural network with dynamic ex-
ternal memory. Nature, 538(7626), 471–476. Retrieved
from http://dx.doi.org/10.1038/nature20101

Hochreiter, S., & Schmidhuber, J. (1997, November). Long
short-term memory. Neural Computation, 9(8), 1735–1780.

Mikolov, T., & Zweig, G. (2012, December). Context depen-
dent recurrent neural network language model. In 2012
IEEE Spoken Language Technology Workshop (SLT) (pp.
234–239). doi: 10.1109/SLT.2012.6424228

Saxe, A. M., McClelland, J. L., & Ganguli, S. (2013, De-
cember). Exact solutions to the nonlinear dynamics of
learning in deep linear neural networks. arXiv:1312.6120
[cond-mat, q-bio, stat] . Retrieved 2018-04-14, from
http://arxiv.org/abs/1312.6120 (arXiv: 1312.6120)

St. John, M. F., & McClelland, J. L. (1990). Learning and
applying contextual constraints in sentence comprehension.
Artificial intelligence, 46(1-2), 217–257.

The Alan Turing Institute. (n.d.). Recurrent Neu-
ral Networks and Models of Computation - Edward

Grefenstette, DeepMind. Retrieved 2018-02-28, from
https://www.youtube.com/watch?v=OWZ3mtzpn7g


		2018-08-20T14:49:38-0500
	Preflight Ticket Signature




